×

Jacobi identity for vertex algebras in higher dimensions. (English) Zbl 1111.17014

Summary: Vertex algebras in higher dimensions, introduced previously by Nikolov, provide an algebraic framework for investigating axiomatic quantum field theory with global conformal invariance. We develop further the theory of such vertex algebras by introducing formal calculus techniques and investigating the notion of polylocal fields. We derive a Jacobi identity which together with the vacuum axiom can be taken as an equivalent definition of vertex algebra.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bakalov B., Adv. Math. 162 pp 1– (2001) · Zbl 1001.16021
[2] Bakalov B., Int. Math. Res. Notices 2003 pp 123– (2003) · Zbl 1032.17045
[3] Bakalov B., Lie Theory and its Applications in Physics VI (2006)
[4] DOI: 10.1007/s002200050541 · Zbl 0959.17018
[5] DOI: 10.1016/0550-3213(84)90052-X · Zbl 0661.17013
[6] Borcherds R. E., Proc. Natl. Acad. Sci. U.S.A. 83 pp 3068– (1986) · Zbl 0613.17012
[7] Borcherds R. E., Topological Field Theory, Primitive Forms and Related Topics 160 pp 35– (1998)
[8] DOI: 10.4310/AJM.1997.v1.n1.a6 · Zbl 1022.17018
[9] DOI: 10.4310/AJM.1997.v1.n1.a6 · Zbl 1022.17018
[10] DOI: 10.1007/s000290050036 · Zbl 0918.17019
[11] DOI: 10.1007/978-1-4612-2256-9
[12] DOI: 10.1007/978-1-4612-0353-7
[13] Dong C., Recent Developments in Infinite-dimensional Lie Algebras and Conformal Field Theory 297 pp 69– (2002)
[14] Fattori D., J. Algebra 258 pp 23– (2002) · Zbl 1050.17023
[15] DOI: 10.1090/conm/121 · Zbl 0743.17029
[16] Frenkel E., Vertex Algebras and Algebraic Curves 88 (2001) · Zbl 0981.17022
[17] Frenkel I. B., Mem. Am. Math. Soc. 104 (494) pp 1– (1993)
[18] Frenkel I. B., Vertex Operator Algebras and the Monster 134 (1988) · Zbl 0674.17001
[19] Goddard P., Infinite-Dimensional Lie Algebras and Groups 7 pp 556– (1989)
[20] DOI: 10.1090/ulect/010
[21] Kac V. G., Commun. Math. Phys. 186 pp 233– (1997) · Zbl 1040.17500
[22] DOI: 10.1007/s002200100370 · Zbl 1040.17500
[23] Kapustin A., Commun. Math. Phys. 233 pp 79– (2003) · Zbl 1051.17017
[24] DOI: 10.1007/978-0-8176-8186-9
[25] Li H., J. Pure Appl. Algebra 109 pp 143– (1996) · Zbl 0854.17035
[26] Li H., J. Algebra 262 pp 1– (2003) · Zbl 1052.17014
[27] Mossberg G., J. Algebra 170 pp 956– (1994) · Zbl 0827.17029
[28] DOI: 10.1007/s00220-004-1133-4 · Zbl 1125.17010
[29] Nikolov N. M., Nucl. Phys. B 722 pp 266– (2005) · Zbl 1128.81320
[30] DOI: 10.1016/j.nuclphysb.2003.08.006 · Zbl 1058.81054
[31] DOI: 10.1007/s002200100414 · Zbl 0985.81055
[32] Nikolov N. M., Rev. Math. Phys. 17 pp 613– (2005) · Zbl 1111.81112
[33] Primc M., J. Pure Appl. Algebra 135 pp 253– (1999) · Zbl 0929.17034
[34] Todorov I. T., Conformal Groups and Related Symmetries, Physical Results and Mathematical Background 261 pp 387– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.