×

zbMATH — the first resource for mathematics

A simple and unified approach to identify integrable nonlinear oscillators and systems. (English) Zbl 1111.34003
Summary: We consider a generalized second-order nonlinear ordinary differential equation (ODE) of the form \(\ddot x+(k_1x^q+k_2)\dot x+ k_3x^{2q+1}+ k_4x^{q+1}+ \lambda_1x=0\), where \(k_i\), \(i=1,2,3,4\), \(\lambda_1\), and \(q\) are arbitrary parameters, which includes several physically important nonlinear oscillators such as the simple harmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator, force-free Duffing and Duffing-van der Pol oscillators, modified Emden-type equation and its hierarchy, generalized Duffing-van der Pol oscillator equation hierarchy, and so on, and investigate the integrability properties of this rather general equation. We identify several new integrable cases for arbitrary value of the exponent \(q\), \(q\in\mathbb R\). The cases \(q=1\) and \(q=2\) are analyzed in detail and the results are generalized to arbitrary \(q\). Our results show that many classical integrable nonlinear oscillators can be derived as subcases of our results and significantly enlarge the list of integrable equations that exists in the contemporary literature. To explore the above underlying results, we use the recently introduced generalized extended Prelle-Singer procedure applicable to second-order ODEs. As an added advantage of the method, we not only identify integrable regimes but also construct integrating factors, integrals of motion, and general solutions for the integrable cases, wherever possible, and bring out the mathematical structures associated with each of the integrable cases.

MSC:
34A05 Explicit solutions, first integrals of ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70K99 Nonlinear dynamics in mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1088/0305-4470/37/16/004 · Zbl 1069.34055 · doi:10.1088/0305-4470/37/16/004
[2] DOI: 10.1088/0305-4470/30/21/017 · Zbl 0927.34006 · doi:10.1088/0305-4470/30/21/017
[3] DOI: 10.1112/jlms/s1-36.1.33 · Zbl 0096.29603 · doi:10.1112/jlms/s1-36.1.33
[4] DOI: 10.1090/S0002-9947-1983-0704611-X · doi:10.1090/S0002-9947-1983-0704611-X
[5] Man Y. K., J. Symb. Comput. 11 pp 1– (1996)
[6] DOI: 10.1088/0305-4470/34/14/308 · Zbl 1017.34010 · doi:10.1088/0305-4470/34/14/308
[7] DOI: 10.1088/0305-4470/35/17/306 · Zbl 1040.34006 · doi:10.1088/0305-4470/35/17/306
[8] DOI: 10.1088/0305-4470/35/17/306 · Zbl 1040.34006 · doi:10.1088/0305-4470/35/17/306
[9] DOI: 10.1098/rspa.2005.1465 · Zbl 1186.34046 · doi:10.1098/rspa.2005.1465
[10] DOI: 10.2991/jnmp.2005.12.s1.16 · Zbl 1362.34002 · doi:10.2991/jnmp.2005.12.s1.16
[11] DOI: 10.1016/j.chaos.2005.03.024 · Zbl 1086.34500 · doi:10.1016/j.chaos.2005.03.024
[12] DOI: 10.1007/978-3-642-55688-3 · doi:10.1007/978-3-642-55688-3
[13] DOI: 10.1088/0305-4470/36/3/308 · Zbl 1066.70015 · doi:10.1088/0305-4470/36/3/308
[14] DOI: 10.1016/0022-460X(90)90817-J · Zbl 1235.70096 · doi:10.1016/0022-460X(90)90817-J
[15] Bluman G. W., Symmetries and Integration Methods for Differential Equations (2002) · Zbl 1013.34004
[16] DOI: 10.1006/jsco.1999.0264 · Zbl 0936.65082 · doi:10.1006/jsco.1999.0264
[17] DOI: 10.1006/jsco.1999.0264 · Zbl 0936.65082 · doi:10.1006/jsco.1999.0264
[18] DOI: 10.1088/0305-4470/26/23/033 · Zbl 0822.34007 · doi:10.1088/0305-4470/26/23/033
[19] DOI: 10.1088/0305-4470/26/19/030 · Zbl 0806.34008 · doi:10.1088/0305-4470/26/19/030
[20] DOI: 10.1088/0305-4470/26/19/030 · Zbl 0806.34008 · doi:10.1088/0305-4470/26/19/030
[21] DOI: 10.1088/0305-4470/26/19/030 · Zbl 0806.34008 · doi:10.1088/0305-4470/26/19/030
[22] DOI: 10.1088/0305-4470/26/19/030 · Zbl 0806.34008 · doi:10.1088/0305-4470/26/19/030
[23] DOI: 10.1088/0305-4470/26/19/030 · Zbl 0806.34008 · doi:10.1088/0305-4470/26/19/030
[24] DOI: 10.1103/PhysRevE.72.066203 · doi:10.1103/PhysRevE.72.066203
[25] Ince E. L., Ordinary Differential Equations (1956) · Zbl 0063.02971
[26] Murphy G. M., Ordinary Differential Equations and Their Solutions (1969)
[27] DOI: 10.1103/PhysRevA.30.2788 · doi:10.1103/PhysRevA.30.2788
[28] DOI: 10.1103/PhysRevA.30.2788 · doi:10.1103/PhysRevA.30.2788
[29] DOI: 10.1007/BF02725359 · doi:10.1007/BF02725359
[30] DOI: 10.1007/BF02725359 · doi:10.1007/BF02725359
[31] Gradshteyn I. S., Table of Integrals, Series and Products (1980) · Zbl 0521.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.