×

zbMATH — the first resource for mathematics

Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay. (English) Zbl 1111.34056
The authors consider the linearly coupled system of delay-differential equations \[ \frac{dx_i(t)}{dt} = f(x_i(t)) + c \sum_{j=1,j\neq i}^{m}a_{ij} \Gamma [x_j(t-\tau)-x_i(t)], \] where \(i=1,\dots,m\), \(x_i(t)\in \mathbb{R}^n\) denotes the state variable of the \(i\)th node, \(\Gamma=\mathrm{diag} \{ \gamma_1,\dots,\gamma_n\}\) is the inner connection matrix with \(\gamma_j\geq 0\) and \(a_{ij}\geq 0\) for all \(i\) and \(j\).
Main results of the paper concern the conditions of complete synchronization, i.e., conditions for the following asymptotic behavior: \(\lim_{t\to \infty} | x_j(t)-x_i(t)| =0\) for all \(i\) and \(j\). In particular, the authors extend the master stability function methodology due to L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar and J. F. Heagy [Chaos 7, 520–543 (1997; Zbl 0933.37030)] and the methodology used by W. Lu and T. Chen [Physica D 213, 214–230 (2006; Zbl 1105.34031)] to delay systems.

MSC:
34K25 Asymptotic theory of functional-differential equations
34K19 Invariant manifolds of functional-differential equations
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Strogatz, S.H., Exploring complex networks, Nature, 410, 268-276, (2001) · Zbl 1370.90052
[2] Albert, R.; Barabási, A.L., Statistic mechanics of complex networks, Rev. modern phys., 74, 47-91, (2002)
[3] Wang, X.F.; Chen, G., Complex networks: small-world, scale-free and beyond, IEEE circ. syst. mag., 3, 1, 6-20, (2003)
[4] Chua, L.O., Nonlinear waves, patterns, and spatiotemporal chaos in dynamical arrays, IEEE trans. circ. syst., 42, (1995), (special issue)
[5] Winfree, A.T., The geometry of biological time, (1980), Springer-Verlag New York · Zbl 0856.92002
[6] Wang, X.F.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE trans. circ. syst.-1, 49, 1, 54-62, (2002) · Zbl 1368.93576
[7] Wang, X.F.; Chen, G., Synchronization in small-world dynamical networks, Int. J. bifur. chaos, 12, 1, 187-192, (2002)
[8] Lashmanan, M.; Murali, K., Chaos in nonlinear oscillator, controlling and synchronization, (1996), World Scientific Singapore
[9] Pickovsky, A.; Rosebblum, M.; Kurths, J.; Strogatz, S., Synchronization: A universal concept in nonlinear sciences, (2001), Cambridge University Press
[10] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.L.; Zhou, C.S., The synchronization of chaotic systems, Phys. rep., 366, 1-101, (2002) · Zbl 0995.37022
[11] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 8, 821-824, (1990) · Zbl 0938.37019
[12] Heagy, J.F.; Carroll, T.L.; Pecora, L.M., Synchronization chaos in coupled oscillator systems, Phys. rev. E, 50, 1874-1885, (1994)
[13] Jost, J.; Joy, M.P., Spectral properties and synchronization in coupled map lattices, Phys. rev. E, 65, 016201, (2001)
[14] Wu, C.W.; Chua, L.O., Synchronization in an array of linearly coupled dynamical systems, IEEE trans. circ. syst.-1, 42, 8, 430-447, (1995) · Zbl 0867.93042
[15] Wu, C.W., Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18, 1057-1064, (2005) · Zbl 1089.37024
[16] Lu, W.; Chen, T., Synchronization of coupled connected neural networks with delays, IEEE trans. circ. syst.-1, 51, 12, 2491-2503, (2004) · Zbl 1371.34118
[17] Lu, W.; Chen, T., New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 214-230, (2006) · Zbl 1105.34031
[18] Nakamura, Y.; Tominaga, F.; Munakata, T., Clustering behavior of time-delayed nearest-neighbor coupled oscillators, Phys. rev. E, 49, 4849-4856, (1994)
[19] Rosenblum, M.; Pikovsky, A., Delayed feedback control of collective synchrony, an approach to suppression of pathological brain rhythms, Phys. rev. E, 70, 041904, (2004)
[20] Jiang, G.-P.; Zheng, W.X.; Chen, G., Global chaos synchronization with channel time-delay, Chaos solitons fractals, 20, 267-275, (2004) · Zbl 1045.34021
[21] Sun, J., Global synchronization criteria with channel time-delay for chaotic time-delay systems, Chaos solitons fractals, 21, 967-975, (2004) · Zbl 1045.34050
[22] Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A., Parameter mismatches, variable delay timesa and synchronization in time-delayed systems, Chaos solitons fractals, 25, 325-331, (2005) · Zbl 1081.34074
[23] Ciszak, M.; Marino, F.; Toral, R.; Balle, S., Dynamical mechanism of anticipating synchronization in exitable systems, Phys. rev. lett., 93, 11, 114102, (2004)
[24] Shahverdiev, E.M.; Shore, K.A., Generalized synchronization in time-delayed systems, Phys. rev. E, 71, 016201, (2005)
[25] Senthilkumar, D.V.; Lakshmanan, M., Transition from anticipatory to lag synchronization via complete synchronization in time-delayed systems, Phys. rev. E, 71, 016211, (2005)
[26] Buric, N.; Todorovic, D., Synchronization of hyperchaotic systems with delayed bidirectional coupling, Phys. rev. E, 68, 066218, (2003)
[27] Dhamala, M.; Jirsa, V.K.; Ding, M., Enhancement of neural synchrony by time delay, Phys. rev. lett., 92, 7, 074104, (2004)
[28] Li, C.; Chen, G., Synchronization in general complex dynamical networks with coupling delays, Physica A, 343, 263-278, (2004)
[29] Driver, R.D., Linear differential systems with small delays, J. differential equations, 21, 148-166, (1976) · Zbl 0319.34067
[30] R.D. Driver, On Ryabov’s asymptotic characterization of the solution of quasi-linear differential equations with small delays, SIAM Review, 10:3, 329-341 · Zbl 0165.42801
[31] Chicone, C., Inertial and slow manifolds for delay equations with small delays, J. differential equations, 190, 364-406, (2003) · Zbl 1044.34026
[32] Hale, J., Theory of functional differential equations, (1977), Springer-Verlag New York
[33] Diekmann, O.; Van Gils, S.A.; Lunel, S.M.V.; Walther, H.-O., Delay equations: functional, complex, and nonlinear analysis, (1995), Springer-Verlag New York
[34] Horn, P.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press New York
[35] Berman, A., Completely positive matrices, (2003), World Scientific Publishing New Jersey · Zbl 1042.15012
[36] Farmer, J.D., Chaotic attractors of an infinite-dimensional dynamical system, Physica D, 4, 366-393, (1982) · Zbl 1194.37052
[37] Caraballo, T.; Marin-Rubio, P.; Valero, J., Autonomous and non-autonomous attractors for differential equations with delays, J. differential equations, 208, 9-41, (2005) · Zbl 1074.34070
[38] Ruelle, D., Characteristic exponents and invariant manifold in Hilbert space, Ann. math., 115, 2, 243-290, (1982) · Zbl 0493.58015
[39] Boyd, S.; EI Ghaoui, L.; Feron, E.; Balakrishnana, U., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA
[40] Lorenz, E.N., Deterministic nonperiodic flow, J. atmom. sci., 20, 130-141, (1963) · Zbl 1417.37129
[41] Rösller, O.E., Continuous chaos — four prototype equations, Ann. NY, acad. sci., 316, 376-392, (1979)
[42] Matsumoto, T.; Chua, L.O.; Ayaki, K., Reality of chaos in the double scroll circuit: A computer-assisted proof, IEEE trans. circ. syst., 35, 7, 909-925, (1988) · Zbl 0661.58019
[43] Zou, F.; Nosse, J.A., Bifurcation and chaos in celullar neural networks, IEEE trans. CAS-1, 40, 3, 166-173, (1993)
[44] Verhulst, F., Nonlinear differential equations and dynamical systems, (1990), Springer-Verlag Berlin · Zbl 0685.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.