×

Fuzzy logic programming via multilattices. (English) Zbl 1111.68016

Summary: We investigate the use of multilattices as the set of truth-values underlying a general fuzzy logic programming framework. On the one hand, some theoretical results about ideals of a multilattice are presented in order to provide an ideal-based semantics; on the other hand, a restricted semantics, in which interpretations assign elements of a multilattice to each propositional symbol, is presented and analysed.

MSC:

68N17 Logic programming
06B99 Lattices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Benado, M., LES ensembles partiellement ordonnés et le théorème de raffinement de Schreier, II. théorie des multistructures, Czechoslovak math. J., 5, 80, 308-344, (1955) · Zbl 0068.25902
[2] Birkhoff, G., Lattice theory, (1973), American Mathematical Society Providence, RI · Zbl 0126.03801
[3] Cordero, P.; Gutiérrez, G.; Martínez, J.; de Guzmán, I.P., A new algebraic tool for automatic theorem provers, Ann. math. artificial intelligence, 42, 4, 369-398, (2004) · Zbl 1095.68110
[4] P. Cordero, J. Martínez, G. Gutiérrez, I. de Guzmán, Generalizations of lattices via non-deterministic operators. Discrete Math 295 (1-3) (2005) 107-141.
[5] C. Damásio, J. Medina, M. Ojeda-Aciego, Sorted multi-adjoint logic programs: termination results and applications, in: Logics in Artificial Intelligence, JELIA’04, Lecture Notes in Artificial Intelligence, Vol. 3229, 2004, pp. 260-273.
[6] C. Damásio, L. Pereira, Monotonic and residuated logic programs, Lecture Notes in Computer Science, Vol. 2143, 2001, pp. 748-759. · Zbl 1001.68545
[7] Fitting, M., Bilattices and the semantics of logic programming, J. logic programming, 11, 91-116, (1991) · Zbl 0757.68028
[8] Grätzer, G., General lattice theory, (1998), Birkhäuser Verlag Basal · Zbl 0385.06015
[9] Hansen, D., An axiomatic characterization of multilattices, Discrete math., 1, 99-101, (1981) · Zbl 0447.06005
[10] Johnston, I., Some results involving multilattice ideals and distributivity, Discrete math., 83, 1, 27-35, (1990) · Zbl 0716.06004
[11] Khamsi, M.A.; Misane, D., Fixed point theorems in logic programming, Ann. math. artificial intelligence, 21, 231-243, (1997) · Zbl 0890.68025
[12] Kifer, M.; Subrahmanian, V., Theory of generalized annotated logic programming and its applications, J. logic programming, 12, 335-367, (1992)
[13] Lakhsmanan, L.; Sadri, F., On a theory of probabilistic deductive databases, Theory practice logic programming, 1, 1, 5-42, (2001)
[14] Y. Loyer, U. Straccia. Epistemic foundation of the well-founded semantics over bilattices, in: J. Fiala, V. Koubek, J. Kratochvíl (Eds.), MFCS, Lecture Notes in Computer Science, Vol. 3153, Springer, Berlin, 2004, pp. 513-524. · Zbl 1096.68016
[15] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño, Multi-lattices as a basis for generalized fuzzy logic programming, in: Proc. of WILF, Lecture Notes in Artificial Intelligence, Vol. 3849, 2006, pp. 61-70. · Zbl 1168.68347
[16] J. Medina, M. Ojeda-Aciego, P. Vojtáš, Multi-adjoint logic programming with continuous semantics, in: Proc. Logic Programming and Non-Monotonic Reasoning, LPNMR’01, Lecture Notes in Artificial Intelligence, Vol. 2173, Springer, Berlin, 2001, pp. 351-364. · Zbl 1007.68023
[17] Rachünek, J., 0-idéaux des ensembles ordonnés, Acta univ. palack. olomuc. fac. rer. natur., 45, Math. 14, 77-81, (1974) · Zbl 0324.06001
[18] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, in: Proc. of the American Mathematical Society, Vol. 132(5), 2003, pp. 1435-1443. · Zbl 1060.47056
[19] Rounds, W.; Zhang, G.-Q., Clausal logic and logic programming in algebraic domains, Inform. comput., 171, 183-200, (2001) · Zbl 1005.68094
[20] Stouti, A., A fuzzy version of Tarski’s fixpoint theorem, Arch. math., 40, 273-279, (2004) · Zbl 1108.06008
[21] Vojtáš, P., Fuzzy logic programming, Fuzzy sets and systems, 124, 3, 361-370, (2001) · Zbl 1015.68036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.