×

zbMATH — the first resource for mathematics

An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. (English) Zbl 1112.30007
Summary: The main object of this article is to introduce and investigate an integral operator \(J_{s, b}(f)\) defined, by using the Hurwitz-Lerch Zeta function, on the various subclasses of the class of normalized analytic functions \(f\) in the open unit disk \(\mathbb U\). Using the technique of differential subordination, an interesting property of the general integral operator \(J_{s, b}(f)\) is obtained. Some applications of the results presented here are also considered.

MSC:
30C10 Polynomials and rational functions of one complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
11M35 Hurwitz and Lerch zeta functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Srivastava H. M., Current Topics in Analytic Function Theory (1992) · Zbl 0976.00007
[2] DOI: 10.1006/jmaa.1993.1204 · Zbl 0774.30008
[3] DOI: 10.1016/0022-247X(72)90081-9 · Zbl 0246.30031
[4] DOI: 10.2969/jmsj/1191592000 · Zbl 1022.30014
[5] Srivastava H. M., Series Associated with the Zeta and Related Functions (2001) · Zbl 1014.33001
[6] DOI: 10.1016/j.amc.2004.12.004 · Zbl 1082.11052
[7] DOI: 10.1016/j.jmaa.2004.05.040 · Zbl 1106.11034
[8] DOI: 10.1016/S0096-3003(03)00746-X · Zbl 1078.11054
[9] DOI: 10.1016/j.jmaa.2005.01.020 · Zbl 1076.33006
[10] DOI: 10.2307/2007212 · JFM 45.0672.02
[11] Libera R. J., Proceedings of the American Mathematical Society 135 pp 429– (1969)
[12] DOI: 10.1090/S0002-9947-1969-0232920-2
[13] DOI: 10.1307/mmj/1029003185 · Zbl 0575.30019
[14] Miller S. S., Differential Subordinations: Theory and Applications (2000)
[15] DOI: 10.1016/S0898-1221(02)00097-4 · Zbl 1125.30302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.