×

zbMATH — the first resource for mathematics

A new integrable equation with cuspons and W/M-shape-peaks solitons. (English) Zbl 1112.37063
Summary: We propose a new completely integrable wave equation: \(m_{t}+m_{x}(u^{2} - u\_{x}^{2})+2m^{2}u_{x}=0, m=u - u_{xx}\). The equation is derived from the two dimensional Euler equation and is proven to have Lax pair and bi-Hamiltonian structures. This equation possesses new cusp solitons–cuspons, instead of regular peakons \(ce^{ - |x - ct|}\) with speed c. Through investigating the equation, we develop a new kind of soliton solutions–“W/M”-shape-peaks solitons. There exist no smooth solitons for this integrable water wave equation.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
35Q58 Other completely integrable PDE (MSC2000)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/1.9781611970883
[2] DOI: 10.1007/978-1-4757-1693-1
[3] DOI: 10.1103/PhysRevLett.71.1661 · Zbl 0972.35521
[4] Chen J. H., Neuroscience 126 pp 734– (2004)
[5] DOI: 10.1006/jfan.1997.3231 · Zbl 0907.35009
[6] DOI: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D · Zbl 0940.35177
[7] DOI: 10.1142/1109
[8] DOI: 10.1007/978-3-642-77769-1
[9] DOI: 10.1016/0167-2789(81)90004-X · Zbl 1194.37114
[10] DOI: 10.1103/PhysRevLett.19.1095
[11] DOI: 10.1088/0305-4470/38/7/L04 · Zbl 1069.37048
[12] DOI: 10.1007/s00220-003-0880-y · Zbl 1020.37046
[13] DOI: 10.1142/S0129055X01000752 · Zbl 1025.37034
[14] DOI: 10.1209/epl/i2005-10453-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.