×

zbMATH — the first resource for mathematics

Semiparametric estimation of a two-component mixture model. (English) Zbl 1112.62029
Summary: Suppose that univariate data are drawn from a mixture of two distributions that are equal up to a shift parameter. Such a model is known to be nonidentifiable from a nonparametric viewpoint. However, if we assume that the unknown mixed distribution is symmetric, we obtain the identifiability of this model, which is then defined by four unknown parameters: the mixing proportion, two location parameters and the cumulative distribution function of the symmetric mixed distribution. We propose estimators for these four parameters when no training data is available. Our estimators are shown to be strongly consistent under mild regularity assumptions and their convergence rates are studied. Their finite-sample properties are illustrated by a Monte Carlo study and our method is applied to real data.

MSC:
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62E15 Exact distribution theory in statistics
Software:
bootstrap
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful Geyser. Appl. Statist. 39 357–365. · Zbl 0707.62186
[2] Barndorff-Nielsen, O. (1965). Identifiability of mixtures of exponential families. J. Math. Anal. Appl. 12 115–121. · Zbl 0138.12105
[3] Bowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis . Oxford Univ. Press. · Zbl 0889.62027
[4] Cerrito, P. B. (1992). Using stratification to estimate multimodal density functions with applications to regression. Comm. Statist. Simulation Comput. 21 1149–1164. · Zbl 0775.62090
[5] Chandra, S. (1977). On the mixtures of probability distributions. Scand. J. Statist. 4 105–112. · Zbl 0369.60024
[6] Chen, J. (1995). Optimal rate of convergence for finite mixture models. Ann. Statist. 23 221–233. · Zbl 0821.62023
[7] Cohen, A. C. (1967). Estimation in mixtures of two normal distributions. Technometrics 9 15–28. JSTOR: · Zbl 0147.18104
[8] Cruz-Medina, I. R. and Hettmansperger, T. P. (2004). Nonparametric estimation in semi-parametric univariate mixture models. J. Stat. Comput. Simul. 74 513–524. · Zbl 1060.62041
[9] Dacunha-Castelle, D. and Duflo, M. (1983). Probabilités et Statistique 2 . Problèmes à temps mobile . Masson, Paris. · Zbl 0535.62004
[10] Dacunha-Castelle, D. and Gassiat, E. (1999). Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 1178–1209. · Zbl 0957.62073
[11] Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika 56 463–474. JSTOR: · Zbl 0183.48106
[12] Devroye, L. (1983). The equivalence of weak, strong and complete convergence in \(L_1\) for kernel density estimates. Ann. Statist. 11 896–904. · Zbl 0521.62033
[13] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363–375. JSTOR: · Zbl 0796.62028
[14] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, London. · Zbl 0835.62038
[15] Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577–588. JSTOR: · Zbl 0826.62021
[16] Everitt, B. S. and Hand, D. J. (1981). Finite Mixture Distributions. Chapman and Hall, London. · Zbl 0466.62018
[17] Hall, P. (1981). On the nonparametric estimation of mixture proportions. J. Roy. Statist. Soc. Ser. B 43 147–156. JSTOR: · Zbl 0472.62052
[18] Hall, P. and Zhou, X.-H. (2003). Nonparametric estimation of component distributions in a multivariate mixture. Ann. Statist. 31 201–224. · Zbl 1018.62021
[19] Hunter, D. R., Wang, S. and Hettmansperger, T. P. (2006). Inference for mixtures of symmetric distributions. Ann. Statist. · Zbl 1114.62035
[20] Kitamura, Y. (2004). Nonparametric identifiability of finite mixtures.
[21] Lancaster, T. and Imbens, G. (1996). Case-control studies with contaminated controls. J. Econometrics 71 145–160. · Zbl 0842.62096
[22] Lemdani, M. and Pons, O. (1999). Likelihood ratio tests in contamination models. Bernoulli 5 705–719. · Zbl 0929.62015
[23] Leroux, B. G. (1992). Consistent estimation of a mixing distribution. Ann. Statist. 20 1350–1360. · Zbl 0763.62015
[24] Lindsay, B. G. (1983). The geometry of mixture likelihoods: A general theory. Ann. Statist. 11 86–94. · Zbl 0512.62005
[25] Lindsay, B. G. (1983). The geometry of mixture likelihoods. II. The exponential family. Ann. Statist. 11 783–792. · Zbl 0534.62002
[26] Lindsay, B. G. and Basak, P. (1993). Multivariate normal mixtures: A fast consistent method of moments. J. Amer. Statist. Assoc. 88 468–476. JSTOR: · Zbl 0773.62037
[27] Lindsay, B. G. and Lesperance, M. L. (1995). A review of semiparametric mixture models. J. Statist. Plann. Inference 47 29–39. · Zbl 0832.62027
[28] McLachlan, G. J. and Basford, K. E. (1988). Mixture Models. Inference and Applications to Clustering. Dekker, New York. · Zbl 0697.62050
[29] McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. Wiley, New York. · Zbl 0963.62061
[30] McNeil, D. R. (1977). Interactive Data Analysis. Wiley, New York. · Zbl 0777.62005
[31] Murray, G. D. and Titterington, D. M. (1978). Estimation problems with data from a mixture. Appl. Statist. 27 325–334. · Zbl 0437.62036
[32] Nocedal, J. and Wright, S. J. (1999). Numerical Optimization . Springer, Berlin. · Zbl 0930.65067
[33] Qin, J. (1999). Empirical likelihood ratio based confidence intervals for mixture proportions. Ann. Statist. 27 1368–1384. · Zbl 0960.62048
[34] Quandt, R. E. and Ramsey, J. B. (1978). Estimating mixtures of normal distributions and switching regressions. J. Amer. Statist. Assoc. 73 730–738. · Zbl 0401.62024
[35] Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 195–239. JSTOR: · Zbl 0536.62021
[36] Shashahani, B. M. and Landgrebe, D. A. (1994). The effect of unlabeled samples in reducing the small sample-size problem and mitigating the Hughes phenomenon. IEEE Trans. Geoscience and Remote Sensing 32 1087–1095.
[37] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics . Wiley, New York. · Zbl 1170.62365
[38] Teicher, H. (1961). Identifiability of mixtures. Ann. Math. Statist. 32 244–248. · Zbl 0146.39302
[39] Titterington, D. M. (1983). Minimum distance non-parametric estimation of mixture proportions. J. Roy. Statist. Soc. Ser. B 45 37–46. JSTOR: · Zbl 0563.62027
[40] Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley, Chichester. · Zbl 0646.62013
[41] van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.