×

zbMATH — the first resource for mathematics

Asymmetric multivariate stochastic volatility. (English) Zbl 1112.62116
Summary: This paper proposes and analyses two types of asymmetric multivariate stochastic volatility (SV) models, namely, (i) the SV with leverage (SV-L) model, which is based on the negative correlation between the innovations in the returns and volatility, and (ii) the SV with leverage and size effect (SV-LSE) model, which is based on the signs and magnitude of the returns. The paper derives the state space form for the logarithm of the squared returns, which follow the multivariate SV-L model, and develops estimation methods for the multivariate SV-L and SV-LSE models based on the Monte Carlo likelihood (MCL) approach. The empirical results show that the multivariate SV-LSE model fits the bivariate and trivariate returns of the S&P 500, the Nikkei 225, and the Hang Seng indexes with respect to AIC and BIC more accurately than does the multivariate SV-L model. Moreover, the empirical results suggest that the univariate models should be rejected in favor of their bivariate and trivariate counterparts.

MSC:
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H12 Estimation in multivariate analysis
65C05 Monte Carlo methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz M., Handbook of Mathematical Functions (1970)
[2] DOI: 10.1080/07474930500243035 · Zbl 1075.62092
[3] DOI: 10.1016/S0304-4076(03)00088-5 · Zbl 1012.62109
[4] DOI: 10.1086/261527
[5] DOI: 10.1016/S0304-4076(03)00108-8 · Zbl 1043.62087
[6] DOI: 10.2307/2330812
[7] DOI: 10.1016/0304-405X(82)90018-6
[8] DOI: 10.1016/0304-4076(94)90070-1 · Zbl 0825.62953
[9] DOI: 10.1016/S0927-5398(97)00016-9
[10] DOI: 10.1093/biomet/84.3.669 · Zbl 0888.62086
[11] DOI: 10.2307/1266561 · Zbl 0103.37006
[12] DOI: 10.1017/S0266466600006976 · Zbl 04534738
[13] DOI: 10.2307/2329067
[14] DOI: 10.2307/1392251
[15] DOI: 10.2307/2297980 · Zbl 0805.90026
[16] DOI: 10.1016/0024-3795(88)90223-6 · Zbl 0649.65026
[17] DOI: 10.2307/2328253
[18] DOI: 10.2307/1392199
[19] DOI: 10.1016/j.jeconom.2003.09.001 · Zbl 1328.91254
[20] DOI: 10.1002/jae.652
[21] DOI: 10.2307/1266560
[22] DOI: 10.1002/(SICI)1099-1255(200003/04)15:2<137::AID-JAE546>3.0.CO;2-M
[23] DOI: 10.1016/S0927-5398(02)00072-5
[24] DOI: 10.1017/S0266466605050140 · Zbl 1072.62104
[25] DOI: 10.2307/2938260 · Zbl 0722.62069
[26] DOI: 10.1016/S0304-4076(98)00016-5 · Zbl 0937.62110
[27] Shephard N., Time Series Models in Econometrics, Finance and Other Fields pp 1– (1996)
[28] DOI: 10.1002/for.840 · Zbl 04578303
[29] Taylor S. J., Modelling Financial Time Series (1986) · Zbl 1130.91345
[30] Watanabe T., Unpublished paper, Faculty of Economics, Tokyo Metropolitan University (2003)
[31] DOI: 10.1016/0304-405X(87)90009-2
[32] DOI: 10.1016/j.jeconom.2004.08.002 · Zbl 1335.91116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.