×

zbMATH — the first resource for mathematics

Stress resultant geometrically exact form of classical shell model and vector-like parameterization of constrained finite rotations. (English) Zbl 1112.74420
Summary: In this work we consider the geometrically exact shell model subjected to finite rotations, making use of rotation vector parameters for handling the corresponding constrained rotation for smooth shells. A modification of such a parameterization which is based on the incremental rotation vector and thus capable of avoiding the singularity problem is also discussed.

MSC:
74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ibrahimbegovi?, ASME Applied Mechanics Review 50 pp 199– (1997) · doi:10.1115/1.3101701
[2] Théorie de corps déformables, en Traité de physique, (ed). Librarie Scientific A. Hermann et fils: Paris, 1909; 953-1173.
[3] The Theory of Shells and Plates, Encyclopedia of Physics (ed.). Springer-Verlag: Berlin, 1972.
[4] Chroscielewski, International Journal for Numerical Methods in Engineering 35 pp 63– (1992) · Zbl 0780.73075 · doi:10.1002/nme.1620350105
[5] Sansour, International Journal for Numerical Methods in Engineering 34 pp 73– (1992) · Zbl 0760.73043 · doi:10.1002/nme.1620340107
[6] Ibrahimbegovi?, Computer Methods in Applied Mechanics and Engineering 149 pp 49– (1997) · Zbl 0924.73110 · doi:10.1016/S0045-7825(97)00059-5
[7] Ibrahimbegovi?, Computer Methods in Applied Mechanics and Engineering 118 pp 285– (1994) · Zbl 0849.73037 · doi:10.1016/0045-7825(94)90004-3
[8] Argyris, Computer Methods in Applied Mechanics and Engineering 32 pp 85– (1982) · Zbl 0505.73064 · doi:10.1016/0045-7825(82)90069-X
[9] Simo, Computer Methods in Applied Mechanics and Engineering 58 pp 79– (1986) · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[10] Dynamics of flexible structures perfoming large overall motions: a geometrically exact nonlinear approach. UCB/ERL, MR6/36: UC Berkeley, 1986.
[11] Ibrahimbegovi?, International Journal for Numerical Methods and Engineering 38 pp 3653– (1995) · Zbl 0835.73074 · doi:10.1002/nme.1620382107
[12] Budiansky, Journal of Applied Mechanics 35 pp 393– (1968) · doi:10.1115/1.3601208
[13] Ahmad, International Journal for Numerical Methods in Engineering 2 pp 419– (1970) · doi:10.1002/nme.1620020310
[14] Geometrisch nichtlineare elastostatik und finite elemnete, pages Bericht-Nr 76/2. habilitation. Institut für Baustatik, 1976.
[15] Hughes, Computer Methods in Applied Mechanics in Engineering 26 pp 331– (1981) · Zbl 0461.73061 · doi:10.1016/0045-7825(81)90121-3
[16] Bathe, International Journal for Numerical Methods in Engineering 21 pp 367– (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[17] Bathe, International Journal for Numerical Methods in Engineering 22 pp 697– (1986) · Zbl 0585.73123 · doi:10.1002/nme.1620220312
[18] Belytschko, Computer Methods in Applied Mechanics and Engineering 51 pp 221– (1985) · Zbl 0581.73091 · doi:10.1016/0045-7825(85)90035-0
[19] Belytschko, Computer Methods in Applied Mechanics and Engineering 98 pp 93– (1992) · Zbl 0760.73061 · doi:10.1016/0045-7825(92)90100-X
[20] Gruttmann, Ingenieur-Archiv 59 pp 54– (1989) · doi:10.1007/BF00536631
[21] Buechter, International Journal for Numerical Methods in Engineering 34 pp 39– (1992) · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[22] Simo, Computer Methods in Applied Mechanics and Engineering 72 pp 267– (1989) · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[23] Simo, Computer Methods in Applied Mechanics and Engineering 79 pp 21– (1990) · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[24] Betsch, Computer Methods in Applied Mechanics and Engineering 155 pp 273– (1998) · Zbl 0947.74060 · doi:10.1016/S0045-7825(97)00158-8
[25] Theoretical Elasticity. Oxford University Press: Oxford, 1968. · Zbl 0155.51801
[26] Carroll, Archives for Rational Mechanics and Analysis 48 pp 302– (1972) · Zbl 0283.73034 · doi:10.1007/BF00250856
[27] Brank, International Journal for Numerical Methods in Engineering 40 pp 689– (1997) · Zbl 0892.73055 · doi:10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7
[28] The Finite Element Method, vol 2: Solid and Fluid Mechanics, Dynamics and Nonlinearity. McGraw-Hill: London, 1991.
[29] Hughes, Computers and Structures 8 pp 391– (1978) · Zbl 0377.73046 · doi:10.1016/0045-7949(78)90183-9
[30] Brank, Computer Mechanics 16 pp 314– (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.