×

zbMATH — the first resource for mathematics

Electromagnetic and gravitational interactions of the spinning particle. (English) Zbl 1112.83007
Summary: We consider the invariance of the spinning free particle Lagrangian under the global coordinate transformations for the classical model of the electron with internal degrees of freedom and obtain the conservation of the energy-momentum, total angular momentum, and electric charge. The local gauge transformations give the electromagnetic and gravitational interactions of the spinning particle in the Riemann-Cartan space from the generalized spin connections. We show that the covariant constancy of the Dirac matrices gives; (i) the form invariance of the classical equations of motion, except the gravitational force terms in nongeodesic equation, (ii) the conservation of the electromagnetic current, (iii) the quantum Hamiltonian and equations of motion from the classical ones without the quantum ordering corrections, and (iv) the minimal coupling of the gravitation with the spinning particle in the Hamiltonian and in wave equations in the Riemann-Cartan space-time.

MSC:
83Cxx General relativity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRev.101.1597 · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[2] DOI: 10.1063/1.1703702 · Zbl 0095.22903 · doi:10.1063/1.1703702
[3] DOI: 10.1143/PTP.38.491 · doi:10.1143/PTP.38.491
[4] Hayashi K., Prog. Theor. Phys. 39 pp 464– (1968)
[5] DOI: 10.1016/0003-4916(73)90081-X · doi:10.1016/0003-4916(73)90081-X
[6] DOI: 10.1143/PTP.64.866 · Zbl 1060.83524 · doi:10.1143/PTP.64.866
[7] DOI: 10.1103/RevModPhys.48.393 · Zbl 1371.83017 · doi:10.1103/RevModPhys.48.393
[8] Neeman Y., Lecture Notes in Mathematics 676 (1979)
[9] DOI: 10.1007/BF00756072 · Zbl 0483.53028 · doi:10.1007/BF00756072
[10] DOI: 10.1088/0264-9381/13/4/008 · Zbl 0851.53051 · doi:10.1088/0264-9381/13/4/008
[11] DOI: 10.1007/BF01339714 · doi:10.1007/BF01339714
[12] DOI: 10.1007/BF01339714 · doi:10.1007/BF01339714
[13] Schrödinger E., Sitz. Preuss Ak. d. Wiss. 25 pp 105– (1932)
[14] Bargmann V., Sitz. Preuss. Ak. d. Wiss. 25 pp 346– (1932)
[15] DOI: 10.1088/0264-9381/20/13/337 · Zbl 1040.83028 · doi:10.1088/0264-9381/20/13/337
[16] DOI: 10.1016/0550-3213(77)90419-9 · doi:10.1016/0550-3213(77)90419-9
[17] DOI: 10.1016/0550-3213(77)90419-9 · doi:10.1016/0550-3213(77)90419-9
[18] DOI: 10.1016/0375-9601(71)90433-6 · doi:10.1016/0375-9601(71)90433-6
[19] de Sabbata V., Introduction to Gravitation (1985)
[20] DOI: 10.1103/PhysRevLett.52.2009 · doi:10.1103/PhysRevLett.52.2009
[21] DOI: 10.1103/PhysRevLett.52.2009 · doi:10.1103/PhysRevLett.52.2009
[22] DOI: 10.1088/0264-9381/4/4/011 · doi:10.1088/0264-9381/4/4/011
[23] DOI: 10.1088/0264-9381/4/4/011 · doi:10.1088/0264-9381/4/4/011
[24] DOI: 10.1103/PhysRevD.24.1470 · doi:10.1103/PhysRevD.24.1470
[25] DOI: 10.1103/PhysRevLett.2.435 · doi:10.1103/PhysRevLett.2.435
[26] DOI: 10.1103/PhysRevD.56.4689 · doi:10.1103/PhysRevD.56.4689
[27] DOI: 10.1023/A:1018897719975 · doi:10.1023/A:1018897719975
[28] DOI: 10.1023/A:1018897719975 · doi:10.1023/A:1018897719975
[29] DOI: 10.1023/A:1018897719975 · doi:10.1023/A:1018897719975
[30] DOI: 10.1140/epjc/s2005-02356-0 · doi:10.1140/epjc/s2005-02356-0
[31] DOI: 10.1140/epjc/s2005-02356-0 · doi:10.1140/epjc/s2005-02356-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.