zbMATH — the first resource for mathematics

On the spectrum of curved planar waveguides. (English) Zbl 1113.35143
The authors study the spectrum properties of the Laplacian on a curved strip of constant width built along an infinite plane curve, subject to three different types of boundary conditions (Dirichlet, Neumann, and a combination of these, respectively). Under certain natural conditions, the authors prove that (Theorem 4.1), the essential spectrum of the strip is a connected set, and moreover, under the Neumann boundary conditions, the essential spectrum is \([0,+\infty)\) and no discrete spectrum exists (Theorem 4.2). Under the Dirichlet boundary condition, with certain natural conditions, the ground state exists (Theorem 4.3). In the more general situation of mixed boundary conditions, sufficient conditions for the upper and lower bounds of the infimum of the spectrum were given (Theorem 4.4). The authors also estimate the number of bound states and spectral thresholds in the cases of mixed boundary conditions. In addition, various examples of are given in the paper.
The paper is also intended as an overview of some new and old results on spectral properties of curved quantum waveguides.
Reviewer: Zhiqin Lu (Irvine)

35Q40 PDEs in connection with quantum mechanics
35P15 Estimates of eigenvalues in context of PDEs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
78A50 Antennas, waveguides in optics and electromagnetic theory
47F05 General theory of partial differential operators
47N50 Applications of operator theory in the physical sciences
Full Text: DOI
[1] Ashbaugh, M. S. and Exner, P., Lower bounds to bound state energies in bent tubes, Phys. Lett. A, 150 (1990), 183-186.
[2] Aslanyan, A., Parnovski, L. and Vassiliev, D., Complex resonances in acoustic waveg- uides, Quart. J. Mech. Appl. Math., 53 (2000), 429-447. 789 · Zbl 0972.76091
[3] Avishai, Y., Bessis, D., Giraud, B. G. and Mantica, G., Quantum bound states in open geometries, Phys. Rev. B, 44 (1991), 8028-8034.
[4] Bentosela, F., Duclos, P. and Exner, P., Absolute continuity in periodic thin tubes and strongly coupled leaky wires, Lett. Math. Phys., 65 (2003), 75-82. · Zbl 1038.81018
[5] Borisov, D., Ekholm, T., and Kova\check rík, H., Spectrum of the magnetic Schrödinger oper- ator in a waveguide with combined boundary conditions, Ann. Henri Poincaré, (2001), 553-572.
[6] Borisov, D. and Exner, P., Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A, 37 (2004), 3411-3428. · Zbl 1050.81008
[7] Borisov, D., Exner, P., and Gadyl’shin, R., Geometric coupling thresholds in a two- dimensional strip, J. Math. Phys., 43 (2002), 6265-6278. · Zbl 1060.35094
[8] Borisov, D., Exner, P., Gadyl’shin, R. and Krej\check ci\check rík, D., Bound states in weakly de- formed strips and layers, Ann. Henri Poincaré, 2 (2002), 553-572. · Zbl 1043.35046
[9] Bulla, W., Gesztesy, F., Renger, W. and Simon, B., Weakly coupled bound states in quantum waveguides, Proc. Amer. Math. Soc., 125 (1997), 1487-1495. · Zbl 0868.35080
[10] Carini, J. P., Londergan, J. T., Mullen, K. and Murdock, D. P., Bound states and resonances in waveguides and quantum wires, Phys. Rev. B, 46 (1992), 15538-15541.
[11] , Multiple bound states in sharply bent waveguides, Phys. Rev. B, 48 (1993), 4503-4515.
[12] Carron, G., Exner, P. and Krej\check ci\check rík, D., Topologically nontrivial quantum layers, J. Math. Phys., 45 (2004), 774-784. · Zbl 1070.58025
[13] Davies, E. B., Spectral theory and differential operators, Camb. Univ Press, Cambridge, 1995.
[14] Davies, E. B. and Parnovski, L., Trapped modes in acoustic waveguides, Quart. J. Mech. Appl. Math., 51 (1998), 477-492. · Zbl 0908.76083
[15] Dermenjian, Y., Durand, M. and Iftimie, V., Spectral analysis of an acoustic multistrat- ified perturbed cylinder, Comm. Partial Differential Equations, 23 (1998), 141-169. · Zbl 0907.47046
[16] Dittrich, J. and K\check rí\check z, J., Bound states in straight quantum waveguides with combined boundary condition, J. Math. Phys., 43 (2002), 3892-3915. · Zbl 1060.81019
[17] , Curved planar quantum wires with Dirichlet and Neumann boundary condi- tions, J. Phys. A, 35 (2002), L269-275.
[18] Duclos, P. and Exner, P., Curvature-induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys., 7 (1995), 73-102. · Zbl 0837.35037
[19] Duclos, P., Exner, P. and Krej\check ci\check rík, D., Locally curved quantum layers, Ukrainian J. Phys., 45 (2000), 595-601.
[20] , Bound states in curved quantum layers, Comm. Math. Phys., 223 (2001), 13-28. · Zbl 0988.81034
[21] Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators, Oxford University Press, New York, 1987. · Zbl 0628.47017
[22] Ekholm, T. and Kova\check rík, H., Stability of the magnetic Schrödinger operator in a waveg- uide, Comm. Partial Differential Equations, to appear.
[23] Evans, D. V., Levitin, M. and Vassiliev, D., Existence theorems for trapped modes, J. Fluid Mech., 261 (1994), 21-31. · Zbl 0804.76075
[24] Exner, P., Spectral properties of Schrödinger operators with a strongly attractive \delta in- teraction supported by a surface, Contemp. Math., AMS, 339, Providence, R.I., 2003, Proceedings of the NSF Summer Research Conference (Mt. Holyoke 2002), pp. 25-36. · Zbl 1044.35037
[25] Exner, P., Freitas, P. and Krej\check ci\check rík, D., A lower bound to the spectral threshold in curved tubes, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 460 (2004), 3457-3467. · Zbl 1330.35360
[26] Exner, P., Gawlista, R., \check Seba, P. and Tater, M., Point interactions in a strip, Ann. Phys., 252 (1996), 133-179. · Zbl 0891.47052
[27] Exner, P. and Ichinose, T., Geometrically induced spectrum in curved leaky wires, J. Phys. A, 34 (2001), 1439-1450. · Zbl 1002.81024
[28] Exner, P., Joye, A. and Kova\check rík, H., Edge currents in the absence of edges, Phys. Lett. A, 264 (1999), 124-130. David Krej\check ci\check rík and Jan K\check rí\check z · Zbl 0940.82059
[29] Exner, P., Joye, A. and Kova\check rík, H., Magnetic transport in a straight parabolic channel, J. Phys. A, 34 (2001), 9733-9752. · Zbl 1120.81300
[30] Exner, P. and Kondej, S., Curvature-induced bound states for a \delta interaction supported by a curve in R3, Ann. Henri Poincaré, 3 (2002), 967-981. · Zbl 1017.81007
[31] , Bound states due to a strong \delta interaction supported by a curved surface, J. Phys. A, 36 (2003), 443-457. · Zbl 1050.81009
[32] , Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in R3, Rev. Math. Phys., 16 (2004), 559-582. · Zbl 1053.81030
[33] , Schrödinger operators with singular interactions: a model of tunneling reso- nances, J. Phys. A, 37 (2004), 8255-8277. · Zbl 1072.81056
[34] , Leaky quantum wire and dots: a resonance model, math-ph/0307030.
[35] , Scattering by local deformations of a straight leaky wire, J. Phys. A, 38 (2005), 4865-4874. · Zbl 1071.81027
[36] Exner, P. and Kova\check rík, H., Magnetic strip waveguides, J. Phys. A, 33 (2000), 3297-3311. · Zbl 0954.81011
[37] Exner, P. and Krej\check ci\check rík, D., Quantum waveguides with a lateral semitransparent barrier: Spectral and scattering properties, J. Phys. A, 32 (1999), 4475-4494. · Zbl 0969.81012
[38] , Bound states in mildly curved layers, J. Phys. A, 34 (2001), 5969-5985. · Zbl 0981.81022
[39] , Waveguides coupled through a semitransparent barrier: the weak-coupling be- haviour, Rev. Math. Phys., 13 (2001), 307-334. · Zbl 1029.81025
[40] Exner, P. and N\check emcová, K., Quantum mechanics of layers with a finite number of point perturbations, J. Math. Phys., 43 (2002), 1152-1184. · Zbl 1059.81063
[41] , Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A, 36 (2003), 10173-10193. · Zbl 1116.81312
[42] Exner, P. and \check Seba, P., Bound states in curved quantum waveguides, J. Math. Phys., 30 (1989), 2574-2580. · Zbl 0693.46066
[43] Exner, P., \check Seba, P. and \check S\check toví\check cek, P., On existence of a bound state in an L-shaped waveguide, Czechoslovak J. Phys. B, 39 (1989), 1181-1191.
[44] Exner, P., \check Seba, P., Tater, M. and Van\check ek, D., Bound states and scattering in quantum waveguides coupled laterally through a boundary window, J. Math. Phys., 37 (1996), 4867-4887. · Zbl 0883.35085
[45] Exner, P. and Vugalter, S. A., Asymptotic estimates for bound states in quantum waveg- uides coupled laterally through a narrow window, Ann. Inst. H. Poincaré, 65 (1996), 109-123. · Zbl 0858.35093
[46] , Bound-state asymptotic estimates for window-coupled dirichlet strips and lay- ers, J. Phys. A, 30 (1997), 7863-7878. · Zbl 0930.58016
[47] , Bound states in a locally deformed waveguide: The critical case, Lett. Math. Phys., 39 (1997), 59-68. · Zbl 0871.35067
[48] Exner, P. and Yoshitomi, K., Band gap of the Schrödinger operator with a strong \delta - interaction on a periodic curve, Ann. Henri Poncaré, 2 (2001), 1139-1158. · Zbl 1035.81020
[49] Freitas, P. and Krej\check ci\check rík, D., A lower bound to the spectral threshold in curved strips with Dirichlet and Robin boundary conditions, submitted.
[50] Fülöp, T. and Tsutsui, I., A free particle on a circle with point interaction, Phys. Lett. A, 264 (2000), 366-374. · Zbl 0948.81537
[51] Glazman, I. M., Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, 1965. · Zbl 0143.36505
[52] Goldstone, J. and Jaffe, R. L., Bound states in twisting tubes, Phys. Rev. B, 45 (1992), 14100-14107.
[53] Hurt, N. E. Mathematical physics of quantum wires and devices, Kluwer, Dordrecht, 2000. · Zbl 1049.81501
[54] Klaus, M., On the bound state of Schrödinger operators in one dimension, Ann. Phys., 108 (1977), 288-300. · Zbl 0427.47033
[55] Kleespies, F. and Stollmann, P., Lifshitz asymptotics and localization for random quan- tum waveguides, Rev. Math. Phys., 12 (2000), 1345-1365. · Zbl 0976.81008
[56] Klingenberg, W., A course in differential geometry, Springer-Verlag, New York, 1978. 791 · Zbl 0366.53001
[57] Krej\check ci\check rík, D. Guides d’ondes quantiques bidimensionnels, Ph.D. thesis, Facultas Mathe- matica Physicaque, Universitas Carolina Pragensis; Faculté des Sciences et Techniques, Université de Toulon et du Var, September 2001, Supervisors: P. Duclos and P. Exner.
[58] , Quantum strips on surfaces, J. Geom. Phys., 45 (2003), 203-217. · Zbl 1016.58015
[59] Krej\check ci\check rík, D. and Tiedra de Aldecoa, R., The nature of the essential spectrum in curved quantum waveguides, J. Phys. A, 37 (2004), 5449-5466. · Zbl 1062.81046
[60] Kreyszig, E., Differential geometry, University of Toronto Press, Toronto, 1959. · Zbl 0088.13901
[61] K\check rí\check z, J., Spectral properties of planar quantum waveguides with combined boundary con- ditions, Ph.D. thesis, Facultas Mathematica Physicaque, Universitas Carolina Pragensis, April 2003, Supervisor: J. Dittrich.
[62] Kuchment, P. and Zeng, H., Convergence of spectra of mesoscopic systems collapsing onto a graph, J. Math. Anal. Appl., 258 (2001), 671-700. · Zbl 0982.35076
[63] , Asymptotics of spectra of Neumann Laplacians in thin domains, Advances in differential equations and mathematical physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, pp. 199-213.
[64] Lin, Ch. and Lu, Z., Existence of bound states for layers built over hypersurfaces in Rn+1, math.DG/0402252.
[65] Londergan, J. T., Carini, J. P. and Murdock, D. P., Binding and scattering in two- dimensional systems, Lect. Note in Phys., m60, Springer, Berlin, 1999. · Zbl 0997.81511
[66] Mekis, A., Fan, S. and Joannopoulos, J. D., Bound states in photonic crystal waveguides and waveguide bends, Phys. Rev. B, 58 (1998), 4809-4817.
[67] Newton, R. G., Bounds for the number of bound states for Schrödinger equation in one and two dimensions, J. Operator Theory, 10 (1983), 119-125. · Zbl 0527.35062
[68] Olendski, O. and Mikhailovska, L., Localized-mode evolution in a curved planar waveg- uide with combined Dirichlet and Neumann boundary conditions, Phys. Rev. E, 67 (2003), art. 056625.
[69] Reed, M. and Simon, B., Methods of modern mathematical physics, I. Functional anal- ysis, Academic Press, New York, 1972. · Zbl 0242.46001
[70] , Methods of modern mathematical physics, IV. Analysis of operators, Academic Press, New York, 1978. · Zbl 0401.47001
[71] Rellich, F., Das Eigenwertproblem von \Delta u + \lambda u = 0 in Halbröhren, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 329-344.
[72] Renger, W. and Bulla, W., Existence of bound states in quantum waveguides under weak conditions, Lett. Math. Phys., 35 (1995), 1-12. · Zbl 0838.35087
[73] Seto, N., Bargmann’s inequalities in spaces of arbitrary dimension, Publ. RIMS, Kyoto Univ., 9 (1974), 429-461. · Zbl 0276.35013
[74] Shargorodsky, E. and Sobolev, A. V., Quasi-conformal mappings and periodic spectral problems in dimension two, J. Anal. Math., 91 (2003), 67-103. · Zbl 1048.30010
[75] Weidmann, J., Linear operators in Hilbert spaces, Springer-Verlag, New York Inc., 1980. · Zbl 0434.47001
[76] Yoshitomi, K., Band gap of the spectrum in periodically curved quantum waveguides, J. Differential Equations, 142 (1998), 123-166. · Zbl 0901.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.