×

zbMATH — the first resource for mathematics

Some geometric aggregation operators based on intuitionistic fuzzy sets. (English) Zbl 1113.54003
The paper is a contribution to the theory of intuitionistic fuzzy sets [see, e.g., K. T. Atanassov, Intuitionistic fuzzy sets. Theory and applications. Heidelberg: Physica-Verlag (1999; Zbl 0939.03057)] which may be treated as an extension of fuzzy set theory in the case when membership functions are unknown but bounded. More precisely the authors develop some new geometric aggregation operators which generalize the concept of a weighted geometric operator (WG and OWG) used in the field of information fusion. These three new operators, namely the intuitionistic fuzzy weighted geometric operator, the intuitionistic fuzzy ordered weighted geometric operator and the intuitionistic fuzzy hybrid geometric operator, enable to treat information containing unfair arguments. The authors also consider an application of the proposed operators in multicriteria fuzzy decision making problems.

MSC:
54A40 Fuzzy topology
03E72 Theory of fuzzy sets, etc.
94A17 Measures of information, entropy
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90C29 Multi-objective and goal programming
03B52 Fuzzy logic; logic of vagueness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-2496(83)90028-7 · Zbl 0522.92028
[2] DOI: 10.1016/S0165-0114(86)80034-3 · Zbl 0631.03040
[3] DOI: 10.1016/0165-0114(89)90215-7 · Zbl 0685.03037
[4] DOI: 10.1016/0165-0114(94)90229-1 · Zbl 0824.04004
[5] DOI: 10.1016/0165-0114(94)90331-X · Zbl 0844.04001
[6] Atanassov K., Intuitionistic Fuzzy Sets: Theory and Applications (1999) · Zbl 0939.03057
[7] DOI: 10.1016/S0165-0114(99)00112-8 · Zbl 0941.03056
[8] DOI: 10.1016/0165-0114(89)90205-4 · Zbl 0674.03017
[9] Benjamin C.O., Interface 4 pp 95– (1992)
[10] DOI: 10.1016/0165-0114(95)00154-9 · Zbl 0871.04006
[11] DOI: 10.1016/S0165-0114(98)00279-6 · Zbl 0961.03051
[12] DOI: 10.1016/0165-0114(94)90084-1 · Zbl 0845.90078
[13] DOI: 10.1016/S0165-0114(00)00004-X · Zbl 1098.90523
[14] DOI: 10.1016/S0165-0114(98)00191-2 · Zbl 0961.03049
[15] DOI: 10.1016/S0165-0114(02)00269-5 · Zbl 1028.03047
[16] DOI: 10.1109/21.229476 · Zbl 0782.04008
[17] DOI: 10.1016/j.fss.2003.08.005 · Zbl 1056.03031
[18] DOI: 10.1016/S0377-2217(99)00197-6 · Zbl 0980.90041
[19] DOI: 10.1002/int.10106 · Zbl 1037.68133
[20] DOI: 10.1016/S0165-0114(98)00271-1 · Zbl 0963.91031
[21] DOI: 10.1016/j.jcss.2003.07.006 · Zbl 1052.03034
[22] DOI: 10.1016/S0165-0114(98)00436-9 · Zbl 0987.03049
[23] DOI: 10.1016/S0165-0114(01)00235-4 · Zbl 1026.54002
[24] Saaty T.L., The Analytic Hierarchy Process (1980) · Zbl 0587.90002
[25] DOI: 10.1016/S0165-0114(98)00244-9 · Zbl 0961.03050
[26] DOI: 10.1016/S0165-0114(98)00402-3 · Zbl 1045.94007
[27] DOI: 10.1016/0038-0121(91)90008-F
[28] DOI: 10.1016/S0377-2217(99)00082-X · Zbl 0990.90072
[29] Xu Z.S., Uncertain Multiple Attribute Decision Making: Methods and Applications (2004)
[30] DOI: 10.1016/j.ins.2003.10.006 · Zbl 1101.68849
[31] DOI: 10.1142/S0218488504003211 · Zbl 1076.91508
[32] DOI: 10.1002/int.20097 · Zbl 1073.90020
[33] DOI: 10.1002/int.10045 · Zbl 1016.68110
[34] DOI: 10.1002/int.10127 · Zbl 1069.68612
[35] DOI: 10.1109/21.87068 · Zbl 0637.90057
[36] DOI: 10.1016/0165-0114(93)90194-M · Zbl 0790.94004
[37] Yager R.R., The Ordered Weighted Averaging Operator: Theory and Application (1997)
[38] DOI: 10.1023/B:FODM.0000013074.68765.97 · Zbl 1057.90032
[39] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.