zbMATH — the first resource for mathematics

A second-order accurate numerical method for the two-dimensional fractional diffusion equation. (English) Zbl 1113.65124
The paper is devoted to a study of a numerical method for space-fractional diffusion equations in two space dimensions, with the differential operators being of Riemann-Liouville type. In contrast to the common practice, the authors impose classical Dirichlet boundary conditions. Moreover they always assume that the unknown solutions are sufficiently well behaved for the analysis of the numerical scheme to go through, without discussing concrete conditions under which this assumption is satisfied.
The algorithm itself is based on a shifted Grünwald approximation of the fractional space derivatives, combined in an alternating direction implicit fashion with a Crank-Nicolson approach for the first-order time derivative. The result is (under the unspecified conditions) an unconditionally stable method with second order accuracy in time and first order accuracy in space. By adding a Richardson extrapolation step, the accuracy with respect to space can be improved to second order as well.

65R20 Numerical methods for integral equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations
35K55 Nonlinear parabolic equations
Full Text: DOI
[1] Baeumer, B.; Meerschaert, M.M., Stochastic solutions for fractional Cauchy problems, Frac. calc. appl. anal., 4, 481-500, (2001) · Zbl 1057.35102
[2] Baeumer, B.; Meerschaert, M.M.; Benson, D.A.; Wheatcraft, S.W., Subordinated advection – dispersion equation for contaminant transport, Water resour. res., 37, 1543-1550, (2001)
[3] Baeumer, B.; Meerschaert, M.M.; Mortensen, J., Space-time fractional derivative operators, Proc. am. math. soc., 133, 2273-2282, (2005) · Zbl 1070.47043
[4] Benson, D.; Wheatcraft, S.; Meerschaert, M., Application of a fractional advection – dispersion equation, Water resour. res., 36, 1403-1412, (2000)
[5] Benson, D.; Schumer, R.; Meerschaert, M.; Wheatcraft, S., Fractional dispersion, Lévy motions, and the MADE tracer tests, Transport porous med., 42, 211-240, (2001)
[6] Cushman, J.H.; Ginn, T.R., Fractional advection – dispersion equation: A classical mass balance with convolution-Fickian flux, Water resour. res., 36, 3763-3766, (2000)
[7] Diethelm, K.; Ford, N.J.; Freed, A.D.; Luchko, Yu., Algorithms for the fractional calculus: a selection of numerical methods, Comput. meth. appl. mech. eng., 194, 743-773, (2005) · Zbl 1119.65352
[8] Douglas, J.; Kim, S., Improved accuracy for locally one-dimensional methods for parabolic equations, Math. mod. meth. appl. sci., 11, 9, 1563-1579, (2001) · Zbl 1012.65095
[9] V.J. Ervin, J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd. Numer. Meth. P.D.E., to appear. · Zbl 1117.65169
[10] Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M., Fractional calculus and continuous-time finance. III. the diffusion limit. mathematical finance (Konstanz, 2000), 171-180, Trends math., (2001), Birkhäuser Basel · Zbl 1138.91444
[11] Isaacson, E.; Keller, H.B., Analysis of numerical methods, (1966), Wiley New York · Zbl 0168.13101
[12] Liu, F.; Ahn, V.; Turner, I.; Zhuang, P., Numerical simulation for solute transport in fractal porous media, Anziam j., 45(E), C461-C473, (2004) · Zbl 1123.76363
[13] Liu, F.; Ahn, V.; Turner, I., Numerical solution of the space fractional fokker – planck equation, J. comput. appl. math., 166, 209-219, (2004) · Zbl 1036.82019
[14] Lapidus, L.; Pinder, G.F., Numerical solution of partial differential equations in science and engineering, (1982), Wiley New York · Zbl 0584.65056
[15] Lynch, V.E.; Carreras, B.A.; del-Castillo-Negrete, D.; Ferreira-Mejias, K.M.; Hicks, H.R., Numerical methods for the solution of partial differential equations of fractional order, J. comput. phys., 192, 406-421, (2003) · Zbl 1047.76075
[16] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E., Fractional calculus and continuous-time finance II: the waiting-time distribution, Physica A, 287, 468-481, (2000)
[17] Meerschaert, M.M.; Benson, D.A.; Baeumer, B., Multidimensional advection and fractional dispersion, Phys. rev. E, 59, 5026-5028, (1999)
[18] Meerschaert, M.M.; Benson, D.A.; Baeumer, B., Operator Lévy motion and multiscaling anomalous diffusion, Phys. rev. E, 63, 1112-1117, (2001)
[19] Meerschaert, M.M.; Scheffler, H.P., Limit distributions for sums of independent random vectors: heavy tails in theory and practice, (2001), Wiley Interscience New York · Zbl 0990.60003
[20] Meerschaert, M.M.; Scheffler, H.P., Semistable Lévy motion, Frac. calc. appl. anal., 5, 27-54, (2002) · Zbl 1032.60043
[21] Meerschaert, M.M.; Tadjeran, C., Finite difference approximations for fractional advection – dispersion flow equations, J. comput. appl. math., 172, 65-77, (2004) · Zbl 1126.76346
[22] Meerschaert, M.M.; Mortensen, J.; Scheffler, H.P., Vector Grünwald formula for fractional derivatives, J. fract. calc. appl. anal., 7, 61-81, (2004) · Zbl 1084.65024
[23] Meerschaert, M.M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. numer. math., 56, 1, 80-90, (2006) · Zbl 1086.65087
[24] Meerschaert, M.M.; Scheffler, H.P.; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. comput. phys., 211, 249-261, (2006) · Zbl 1085.65080
[25] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. phys. A, 37, R161-R208, (2004) · Zbl 1075.82018
[26] Miller, K.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley and Sons New York · Zbl 0789.26002
[27] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[28] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 749-755, (2002) · Zbl 1001.91033
[29] Roop, J.P., Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, J. comput. appl. math., 193, 243-268, (2006) · Zbl 1092.65122
[30] Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P., Waiting time distributions in financial markets, Eur. phys. J. B, 27, 273-275, (2002)
[31] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Phys. A, 284, 376-384, (2000)
[32] Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Wheatcraft, S.W., Eulerian derivation of the fractional advection – dispersion equation, J. contam. hydrol., 48, 69-88, (2001)
[33] Schumer, R.; Benson, D.A.; Meerschaert, M.M.; Baeumer, B., Multiscaling fractional advection – dispersion equations and their solutions, Water resour. res., 39, 1022-1032, (2003)
[34] Samko, S.; Kilbas, A.; Marichev, O., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach London · Zbl 0818.26003
[35] Tadjeran, C.; Meerschaert, M.; Scheffler, P., A second order accurate numerical approximation for the fractional diffusion equation, J. comput. phys., 213, 205-213, (2006) · Zbl 1089.65089
[36] Yuste, S.B.; Acedo, L., An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations, SIAM J. numer. anal., 42, 1862-1874, (2005) · Zbl 1119.65379
[37] Varga, R., Matrix iterative analysis, (1962), Prentice Hall New Jersey · Zbl 0133.08602
[38] Zhang, Y.; Benson, D.A.; Meerschaert, M.M.; Scheffler, H.P., On using random walks to solve the space-fractional advection – dispersion equations, J. statist. phys., 123, 89-110, (2006) · Zbl 1092.82038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.