## Dyson’s constant in the asymptotics of the Fredholm determinant of the sine kernel.(English)Zbl 1113.82030

Summary: We prove that the asymptotics of the Fredholm determinant of $$I-K_\alpha$$, where $$K_\alpha$$ is the integral operator with the sine kernel $$\frac{\sin(x-y)}{\pi(x-y)}$$ on the interval $$[0,\alpha]$$, are given by $\log\det(I-K_{2\alpha}) = -\frac{\alpha^2}{2} -\frac{\log\alpha}{4} +\frac{\log 2}{12} + 3\zeta'(-1) + o(1), \qquad \alpha \to \infty.$ This formula was conjectured by Dyson. The proof for the first and second order asymptotics was given by Widom, and higher order asymptotics have also been determined. In this paper we identify the constant (or third order) term, which has been an outstanding problem for a long time.

### MSC:

 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 82B05 Classical equilibrium statistical mechanics (general) 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators 15B52 Random matrices (algebraic aspects)

### Keywords:

Dyson’s formula; Fredholm determinant
Full Text:

### References:

  Barnes, E. B., The theory of the G-function, Quart. J. Pure Appl. Math., XXXI, 264-313 (1900) · JFM 30.0389.02  Basor, E. L.; Ehrhardt, T., Some identities for determinants of structured matrices, Linear Algebra Appl., 343/344, 5-19 (2002) · Zbl 0994.15008  Basor, New York J. Math., 11, 171 (2005) · Zbl 1099.47026  Basor, Phys. Rev. Lett., 69, 5 (1) · Zbl 0968.82501  Böttcher, A., Silbermann, B.: Analysis of Toeplitz operators. Berlin: Springer, 1990 · Zbl 0732.47029  Deift, Ann. Math., 146, 149 (1997) · Zbl 0936.47028  Dyson, Commun. Math. Phys., 47, 171 (1976) · Zbl 0323.33008  Ehrhardt, Operator Theory: Adv. Appl., Vol., 110, 103 (1999) · Zbl 0938.45011  Gohberg, I., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators in Hilbert space. Trans. Math. Monographs 18, Providence, R.I.: Amer. Math. Soc., 1969 · Zbl 0181.13504  Metha, M.L.: Random Matrices. 6^th ed., San Diego: Academic Press, 1994  Jimbo, Phys. D, 1, 80 (1) · Zbl 1194.82007  Krasovsky, I. V.: Gap probability in the spectrum of random matrices and asymptotics of polynomials orthogonal on an arc of the unit circle. Int. Math. Res. Not. (25), 1249-1272 (2004) · Zbl 1077.60079  Power, Michigan Math. J., 25, 117 (1)  Power, J. Funct. Anal., 31, 52 (31) · Zbl 0401.46036  Tracy, C.A., Widom, H.: Introduction to random matrices. In: Lecture Notes in Physics, Vol. 424, Berlin: Springer, 1993, pp. 103-130 · Zbl 0791.15017  Widom, H., The strong Szegö limit theorem for circular arcs, Indiana Univ. Math. J., 21, 277-283 (1971) · Zbl 0213.34903  Widom, J. Appr. Theory, 77, 51 (1994) · Zbl 0801.42017  Widom, Commun. Math. Phys., 171, 159 (1995) · Zbl 0839.47032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.