zbMATH — the first resource for mathematics

New reformulations for stochastic nonlinear complementarity problems. (English) Zbl 1113.90110
Summary: We consider the stochastic nonlinear complementarity problem (SNCP). We first formulate the problem as a stochastic mathematical program with equilibrium constraints and then, in order to develop efficient algorithms, we give some reformulations of the problem. Furthermore, based on the reformulations, we propose a smoothed penalty method for solving SNCP. A rigorous convergence analysis is also given.

90C15 Stochastic programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI
[1] Cottle R. W., The Linear Complementarity Problem (1992)
[2] DOI: 10.1007/s101070050024 · Zbl 0972.90079 · doi:10.1007/s101070050024
[3] DOI: 10.1023/A:1021018421126 · Zbl 1034.91019 · doi:10.1023/A:1021018421126
[4] DOI: 10.1287/moor.1050.0160 · Zbl 1162.90527 · doi:10.1287/moor.1050.0160
[5] Luo Z. Q., Mathematical Programs with Equilibrium Constraints (1996)
[6] Lin, G. H., Chen, X. and Fukushima, M. 2003. ”Smoothing implicit programming approaches for stochastic mathematical programs with linear complementarity constraints”. Kyoto, Japan: Kyoto University. Technical Report 2003–2006. Department of Applied Mathematics and Physics, Graduate School of Informatics
[7] Lin G. H., Journal of Industrial and Management Optimization 1 pp 99– (2005) · Zbl 1096.90024 · doi:10.3934/jimo.2005.1.99
[8] DOI: 10.1051/cocv:2005005 · Zbl 1080.90055 · doi:10.1051/cocv:2005005
[9] Shapiro, A. 2004. ”Stochastic mathematical programs with equilibrium constraints. Preprint”. Antalanta, Georgia, USA: Georgia Institute of Technology. School of Industrial and System Engineering
[10] Shapiro, A. and Xu, H. 2005. ”Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Preprint”. Georgia, USA: Georgia Institute of Technology, Antalanta. School of Industrial and System Engineering
[11] DOI: 10.1137/040608544 · Zbl 1113.90114 · doi:10.1137/040608544
[12] Clarke F. H., Optimization and Nonsmooth Analysis (1990) · Zbl 0696.49002 · doi:10.1137/1.9781611971309
[13] DOI: 10.1007/s10479-004-5024-z · Zbl 1119.90058 · doi:10.1007/s10479-004-5024-z
[14] DOI: 10.1023/A:1024739508603 · Zbl 1033.90086 · doi:10.1023/A:1024739508603
[15] DOI: 10.1287/moor. · Zbl 1073.90557 · doi:10.1287/moor.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.