×

zbMATH — the first resource for mathematics

Weighted composition operators between weighted Bergman spaces and Hardy spaces on the unit ball of \(\mathbb C^{n}\). (English) Zbl 1114.32003
J. Math. Anal. Appl. 326, No. 1, 88-100 (2007); corrigendum ibid. 342, No. 2, 1494 (2008).
The criteria for boundedness and compactness of weighted composition operators \(W_{\phi,\psi}:f\to\psi(f\circ\phi)\) acting in weighted Bergman spaces or in Hardy spaces on the unit ball of \(\mathbb{C}^n\) are obtained.

MSC:
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
47B33 Linear composition operators
32A36 Bergman spaces of functions in several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berger, C.A.; Coburn, L.A.; Zhu, K.H., Function theory on Cartan domains and the berezin – toeplitz symbol calculus, Amer. J. math., 110, 921-953, (1988) · Zbl 0657.32001
[2] Bonami, A.; Peloso, M.M.; Symesak, F., Factorization of Hardy spaces and Hankel operators on convex domains in \(C^n\), J. geom. anal., 11, 369-397, (2001) · Zbl 1040.47015
[3] Contreras, M.D.; Hernández-Díaz, A.G., Weighted composition operators between different Hardy spaces, Integral equations operator theory, 46, 165-188, (2003) · Zbl 1042.47017
[4] Dunford, N.; Schwartz, J., Linear operators, (1957), Wiley New York, Part 1
[5] Goebeler, T., Composition operators acting between Hardy spaces, Integral equations operator theory, 41, 389-395, (2001) · Zbl 0997.47021
[6] Gorkin, P.; MacCluer, B.D., Essential norms of composition operators, Integral equations operator theory, 48, 27-40, (2004) · Zbl 1065.47027
[7] Gu, Dangsheng, Two-weight norm inequality and Carleson measure in weighted Hardy spaces, Canad. J. math., 44, 1206-1219, (1992) · Zbl 0766.42009
[8] Halmos, P.R., Measure theory, (1974), Springer-Verlag New York · Zbl 0073.09302
[9] Hunziker, H.; Jarchow, H., Composition operators which improve integrability, Math. nachr., 52, 83-99, (1991) · Zbl 0760.47015
[10] Luecking, D.H., Multipliers of Bergman spaces into Lebesgue spaces, Proc. edinb. math. soc., 29, 125-131, (1986) · Zbl 0587.30048
[11] Luo, L.; Shi, J., Composition operators between the weighted Bergman spaces on the bounded symmetric domains of \(C^n\), Chinese J. contemp. math., 21, 55-64, (2000)
[12] Rudin, W., Function theory in the unit ball of \(C^n\), (1980), Springer-Verlag New York
[13] Smith, W., Composition operators between Bergman and Hardy spaces, Trans. amer. math. soc., 348, 2331-2348, (1996) · Zbl 0857.47020
[14] Smith, W.; Yang, L., Composition operators that improve integrability on weighted Bergman spaces, Proc. amer. math. soc., 126, 411-420, (1998) · Zbl 0892.47031
[15] Ueki, Sei-ichiro, Weighted composition operators between weighted Bergman spaces in unit ball of \(C^n\), Nihonkai math. J., 16, 31-48, (2005) · Zbl 1097.47026
[16] Zhu, K., Spaces of holomorphic functions in the unit ball, (2004), Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.