×

Existence of weak solutions to a degenerate time-dependent semiconductor equations with temperature effect. (English) Zbl 1114.35108

Summary: We consider a degenerate time-dependent drift-diffusion model for semiconductors. The electric conductivity in the system is assumed to be temperate-dependent. And the pressure function we use in this paper is \(\varphi (s)=s^{\alpha } (\alpha >1)\). We present existence results for general nonlinear diffusivities for the degenerate Dirichlet-Neumann mixed boundary value problem.

MSC:

35K65 Degenerate parabolic equations
35Q60 PDEs in connection with optics and electromagnetic theory
82D37 Statistical mechanics of semiconductors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jüngel, A., On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4, 677-703 (1994) · Zbl 0820.35128
[2] Jüngel, A., Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4, 497-518 (1995) · Zbl 0841.35114
[3] Ildefonso Díaz, J.; Galiano, Gonzalo; Jüngel, Ansgar, On a quasilinear degenerate system arising in semiconductors theory. Part I: Existence and uniqueness of solutions, Nonlinear Anal. Real World Appl., 2, 305-336 (2001) · Zbl 0994.35072
[4] Ildefonso Díaz, J.; Galiano, Gonzalo; Jüngel, Ansgar, On a quasilinear degenerate system arising in semiconductors theory. Part II: Localization of vacuum solutions, Nonlinear Anal., 36, 5, 569-594 (1998) · Zbl 0924.35066
[5] Fang, W.; Ito, K., Global solutions of the time-dependent drift-diffusion semiconductor equations, J. Differential Equations, 123, 523-566 (1995) · Zbl 0845.35050
[6] Troianiello, G., Elliptic Differential Equations and Obstacle Problems (1987), Plenum · Zbl 0655.35002
[7] Seidman, T. I.; Troianiello, G. M., Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Anal., 9, 1137-1157 (1985) · Zbl 0584.35013
[8] T.I. Seidman, The transient semiconductor problem with generation terms, Technical report, Univ. of Maryland Baltimore Country, Baltimore, MD 21228, USA, 1989; T.I. Seidman, The transient semiconductor problem with generation terms, Technical report, Univ. of Maryland Baltimore Country, Baltimore, MD 21228, USA, 1989 · Zbl 0693.35090
[9] Gajewski, H., On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech., 65, 101-108 (1985) · Zbl 0579.35016
[10] Markowich, P. A.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), Springer · Zbl 0765.35001
[11] Stampacchia, G., Le problèeme dé Dirichlet pour les équations elloptiques du second ordre à coefficients discontinues, Ann. Inst. Fourier (Grenoble), 15, 189-258 (1965)
[12] Zeidler, E., Nonlinear Functional Analysis and Applications (1990), Springer
[13] Yin, Hong-Ming, The semiconductor system with temperature effect, J. Math. Anal. Appl., 196, 135-152 (1995) · Zbl 0992.82045
[14] Adler, M. S., Accurate calculations of the forward drop and power dissipation in thyristors, IEEE Trans. Electron. Dev. ED, 25, 16-22 (1978)
[15] Lions, J., Quelques Methodes de Resolutions des Problems aux Limites non Lineaires (1969), Dunod · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.