zbMATH — the first resource for mathematics

Explicit evaluation of Euler and related sums. (English) Zbl 1115.11052
Summary: Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a (presumably) new proof of the classical Euler sum. We show that several interesting analogues of the Euler sums can be evaluated by systematically analyzing some known summation formulas involving hypergeometric series. Many other identities related to the Euler sums are also presented.

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
33B15 Gamma, beta and polygamma functions
33E20 Other functions defined by series and integrals
11M35 Hurwitz and Lerch zeta functions
11M41 Other Dirichlet series and zeta functions
33C20 Generalized hypergeometric series, \({}_pF_q\)
Full Text: DOI
[1] V.S. Adamchik and H.M. Srivastava, ”Some series of the zeta and related functions,” Analysis 18(1998), 131–144. · Zbl 0919.11056
[2] D.H. Bailey, J.M. Borwein, and R. Girgensohn, ”Experimental evaluation of euler sums,” Experimental Math. 3 (1994), 17–30. · Zbl 0810.11076
[3] A. Basu and T.M. Apostol, ”A new method for investigating euler sums,” Ramanujan J. 4 (2000), 397–419 · Zbl 0971.40001
[4] B.C. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1985. · Zbl 0555.10001
[5] D. Borwein and J.M. Borwein, ”On an intriguing integral and some series related to {\(\zeta\)}(4),” Proc. Amer. Math. Soc. 123 (1995), 1191–1198 · Zbl 0840.11036
[6] D. Borwein, J.M. Borwein, and R. Girgensohn, ”Explicit evaluation of euler sums,” Proc. Edinburgh Math. Soc. (Ser. 2) 38 (1995), 277–294 · Zbl 0819.40003
[7] J.M. Borwein and R. Girgensohn, ”Evaluation of triple euler sums,” Electron. J. Combin. 3(1) (1996), Research Paper 23, 27 pp. (electronic). · Zbl 0884.40005
[8] D. Bowman and D.M. Bradley, ”Multiple Polylogarithms: A brief survey,” in q-Series with Applications to Combinatorics, Number Theory, and Physics (Papers from the Conference held at the University of Illinois, Urbana, Illinois; October 26–28, 2000) (B.C. Berndt and K.Ono, eds), Contemporary Mathematics 291, American Mathematical Society, Providence, Rhode Island, (2001), pp. 71–92.
[9] P. Bracken, ”Euler’s formula for zeta function convolutions,” Amer. Math. Monthly 108 (2001), 771–778.
[10] J. Choi and T.Y. Seo ”Evaluation ofsome infinite series,” Indian J. Pure Appl. Math. 28 (1997), 791–796. · Zbl 0880.33005
[11] J. Choi and H.M. Srivastava, ”Certain classes of infinite series,” Monatsh. Math. 127 (1999), 15–25. · Zbl 0935.40002
[12] J. Choi, H.M. Srivastava, and Y. Kim, ”Applications of a certain family of hypergeometric summationformulas associated with Psi and zeta functions,” Comm. Korean Math. Soc. 16 (2001),319–332. · Zbl 1101.33300
[13] J. Choi, H.M. Srivastava, T.Y. Seo, and A.K. Rathie, ”Some families of infinite series,” Soochow J. Math. 25 (1999), 209–219. · Zbl 0941.40002
[14] L. Comtet, ”Advanced Combinatorics: The Art of Finite and Infinite Expansions” Translated from the French by J. W. Nienhuys (Reidel, Dordrecht and Boston 1974). · Zbl 0283.05001
[15] R.E. Crandall and J.P. Buhler, ”On the evaluation of euler sums,” Experimental Math. 3(1994), 275–285. · Zbl 0833.11045
[16] P.J. de Doelder, ”On some series containing {\(\psi\)} (x)-{\(\psi\)} (y) and {\(\psi\)} (x)-{\(\psi\)} (y))2 for certainvalues of x and y,” J. Comput. Appl. Math. 37 (1991), 125–141. · Zbl 0782.33001
[17] P. Flajolet and B. Salvy, ”Euler sums and contour integral representations,” Experimental Math. 7 (1998), 15–35. · Zbl 0920.11061
[18] M.E. Hoffman, ”Multiple harmonic series,” Pacific J. Math. 152 (1992), 275–290. · Zbl 0763.11037
[19] Y. Kim, ”Infinite series associated withpsi and zeta functions,” Honam Math. J. 22 (2000), 53–60. · Zbl 0964.33004
[20] L. Lewin, Polylogarithms and associated functions, Elsevier, North-Holland, New York, London, and Amsterdam 1981. · Zbl 0465.33001
[21] C. Markett, {”Triple sums and the Riemann Zeta function,”} J. Number Theory 48 (1994), 113–132. · Zbl 0810.11047
[22] N. Nielsen, Die Gammafunktion, Chelsea Publishing Company, (Bronx, New York 1965).
[23] G. Pólya and G. Szegö, ”Problems and Theorems in Analysis,” (Translated from the German by D.Aeppli), Vol. I (Springer-Verlag, New York, Heidelberg, and Berlin, 1972). · Zbl 0236.00003
[24] E.D. Rainville, Special Functions, Macmillan Company, New York, (1960). · Zbl 0092.06503
[25] Th. M. Rassias and H.M. Srivastava, ”Some classes of infinite series associated with the riemann zetaand polygamma functions and generalized harmonic numbers,”Appl. Math. Comput. 131 593–605, 2002 · Zbl 1070.11038
[26] L.-C. Shen, ”Remarks on some integrals and series involving the stirling numbers and {\(\zeta\)}(n),” Trans. Amer. Math. Soc. 347 (1995), 1391–1399. · Zbl 0828.11044
[27] R. Sitaramachandrarao, ”A formula of S.Ramanujan,” J. Number Theory 25 (1987), 1–19. · Zbl 0606.10032
[28] R. Sitaramachandrarao and A. Sivaramsarma, Some identities involving the riemann zeta function,Indian J. Pure Appl. Math. 10 (1979), 602–607.
[29] R. Sitaramachandrarao and A. Sivaramsarma, Two identities due to Ramanujan, Indian J. Pure Appl. Math. 11 (1980), 1139–1140.
[30] R. Sitaramachandrarao and M.V. Subbarao, ”Transformation formulae for multiple series,” Pacific J. Math. 113 (1984) 471–479. · Zbl 0549.10031
[31] H.M. Srivastava and, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, and London, (2001). · Zbl 1014.33001
[32] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Accountof the Principal Transcendental Functions, Fourth ed. Cambridge University Press, Cambridge, London, and New York, (1963).
[33] G.T. Williams ”A New method of Evaluating {\(\zeta\)} (2n),” Amer. Math. Monthly, 60(1953), 19–25. · Zbl 0050.06803
[34] D. Zagier, ”Values of zeta functions andtheir applications,” First European Congress of Mathematics, Vol. II (Paris, 1992) (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, eds.),Progress in Mathematics 120 (1994) 497–512.Birkhäuser, Basel. · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.