Cherepanov, E. A. Normal automorphisms of free Burnside groups of large odd exponents. (English) Zbl 1115.20024 Int. J. Algebra Comput. 16, No. 5, 839-847 (2006). An automorphism \(\varphi\) of a group \(G\) is said to be normal if every normal subgroup of \(G\) is \(\varphi\)-invariant. The author proves that every normal automorphism of a free Burnside group \(B(m,n)\) on \(m\geq 2\) generators of sufficiently large odd exponent \(n\) is inner. Earlier similar results were known for absolutely free groups (Lubotzky), free profinite groups (Jarden), and free soluble pro-\(p\)-groups (Romanovskiĭ). Moreover, the author proves that for every outer automorphism \(\varphi\) of \(B(m,n)\) there is a normal subgroup \(N\leq B(m,n)\) such that \(\varphi(N)\neq N\) and \(B(m,n)/N\) is non-Abelian simple. It is also proved that \(B(m,n)\) can be a normal subgroup of a group of exponent \(n\) only as a direct factor. The proofs rely on Ol’shanskiĭ’s technique of the geometrical approach to defining relations in groups and on certain lemmas in [A. Yu. Ol’shanskiĭ, Groups, rings, Lie and Hopf algebras. Math. Appl., Dordr. 555, 179-187 (2003; Zbl 1045.20028)]. Reviewer: Eugenii I. Khukhro (Cardiff) Cited in 1 ReviewCited in 14 Documents MSC: 20E36 Automorphisms of infinite groups 20F50 Periodic groups; locally finite groups 20F28 Automorphism groups of groups 20F05 Generators, relations, and presentations of groups 20F06 Cancellation theory of groups; application of van Kampen diagrams Keywords:free Burnside groups; normal automorphisms; automorphism groups; periodic groups; outer automorphisms; normal embeddings PDF BibTeX XML Cite \textit{E. A. Cherepanov}, Int. J. Algebra Comput. 16, No. 5, 839--847 (2006; Zbl 1115.20024) Full Text: DOI References: [1] Novikov P. S., Izv. Acad. Nauk SSSR, T. 32 [2] Adian S. I., The Burnside Problem and Identities in Groups (1975) [3] Yu Ol’shanskii A., The Geometry of Defining Relations in Groups (1989) [4] DOI: 10.1007/978-1-4613-0235-3_12 · doi:10.1007/978-1-4613-0235-3_12 [5] DOI: 10.1016/0021-8693(80)90208-2 · Zbl 0432.20024 · doi:10.1016/0021-8693(80)90208-2 [6] DOI: 10.1016/0021-8693(80)90086-1 · Zbl 0432.20025 · doi:10.1016/0021-8693(80)90086-1 [7] DOI: 10.1016/0021-8693(80)90132-5 · Zbl 0435.20015 · doi:10.1016/0021-8693(80)90132-5 [8] Roman’kov V., Sib. Mat. Zh. 24 pp 138– [9] Bolutse V., Algebra Logic 32 pp 441– [10] Gupta C., Algebra Logic 35 pp 249– [11] Romanovski N., Algebra Logic 36 pp 441– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.