Pucci, Patrizia; García-Huidobro, Marta; Manásevich, Raúl; Serrin, James Qualitative properties of ground states for singular elliptic equations with weights. (English) Zbl 1115.35050 Ann. Mat. Pura Appl. (4) 185, Suppl. 5, S205-S243 (2006). In this work, the authors deal with non-negative radial solutions of the singular quasilinear elliptic PDE \[ \text{div}(g(|x|)|\nabla u|^{m-2}\nabla u)+h(|x|)f(u)=0, \;x\in \mathbb R^n \setminus\{0\}, \] where \(g,h:\mathbb R^+\to \mathbb R^+\), \(f\in C(\mathbb R^+)\cap L^1(0,1)\), \(m>1\) and \(n\geq 1\). The singularities can appear in the functions \(g, h \) and \(f\) at the origin. This class contains (among other models) the generalized Matukuma equation.The main theorems are devoted to establishing the uniqueness of ground states for such spatially dependent PDE under different conditions. Reviewer: Luis Alberto Fernandez (Santander) Cited in 24 Documents MSC: 35J60 Nonlinear elliptic equations 35J70 Degenerate elliptic equations 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs Keywords:ground states; \(m\)-Laplacian operator; weight functions; uniqueness PDF BibTeX XML Cite \textit{P. Pucci} et al., Ann. Mat. Pura Appl. (4) 185, S205--S243 (2006; Zbl 1115.35050) Full Text: DOI Link OpenURL References: [1] Batt, Arch. Ration. Mech. Anal., 93, 159 (1986) · Zbl 0605.70008 [2] Chen, Commun. Partial Differ. Equations, 16, 1549 (1991) [3] Clément, Asymptotic Anal., 17, 13 (1998) [4] Coffman, Arch. Ration. Mech. Anal., 46, 81 (1972) · Zbl 0249.35029 [5] Cortázar, Adv. Differ. Equ., 1, 199 (1996) [6] Cortázar, Arch. Ration. Mech. Anal., 142, 127 (1998) · Zbl 0912.35059 [7] Erbe, J. Differ. Equations, 138, 351 (1997) · Zbl 0884.34025 [8] Franchi, Adv. Math., 118, 177 (1996) · Zbl 0853.35035 [9] García-Huidobro, Adv. Differ. Equ., 6, 1517 (2001) [10] Gazzola, Adv. Differ. Equ., 5, 1 (2000) [11] Goncalves, Electron. J. Differ. Equ., 2004, 1 (2004) [12] Kawano, J. Math. Soc. Japan, 45, 719 (1993) [13] Kwong, M.K., Uniqueness of positive solutions for Δu-u+u^p=0 in ℝ^N. Arch. Ration. Mech. Anal. 105, 243-266 (1989) · Zbl 0676.35032 [14] Matukuma, T.: The cosmos. Tokyo: Iwanami Shoten 1938 [15] Mcleod, Trans. Am. Math. Soc., 339, 495 (1993) [16] Mcleod, Arch. Ration. Mech. Anal., 99, 115 (1987) [17] Montefusco, Adv. Differ. Equ., 6, 959 (2001) [18] Peletier, Arch. Ration. Mech. Anal., 81, 181 (1983) · Zbl 0516.35031 [19] Peletier, J. Differ. Equations, 61, 380 (1986) · Zbl 0577.35035 [20] Pucci, Indiana Univ. Math. J., 47, 501 (1998) [21] Pucci, Indiana Univ. Math. J., 47, 529 (1998) [22] Pucci, J. Differ. Equations, 196, 1 (2004) · Zbl 1109.35022 [23] Serrin, Indiana Univ. Math. J., 49, 897 (2000) · Zbl 0979.35049 [24] Tso, J. Anal. Math., 52, 94 (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.