×

A computational framework for free surface fluid flows accounting for surface tension. (English) Zbl 1115.76043

Summary: This work is concerned with the simulation of incompressible Newtonian fluid flows with free surfaces in the presence of surface tension. The computational framework is based on the stabilised velocity-pressure finite element method. The movement and deformation of the computational domain are accounted for by employing the arbitrary Lagrangian-Eulerian (ALE) description of fluid kinematics. The numerical model is extended to incorporate surface tension effects. A novel partitioned solution procedure is developed based on the Newton-Raphson methodology which incorporates full linearisation of the overall incremental problem. Several numerical examples are provided to demonstrate the efficiency of the methodology.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids
76D27 Other free boundary flows; Hele-Shaw flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brooks, A.N.; Hughes, T.J.R., Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[2] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[3] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[4] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[5] Droux, J.-J.; Hughes, T.J.R., A boundary integral modification of the Galerkin/least-squares formulation for the Stokes problem, Comput. methods appl. mech. engrg., 113, 173-182, (1994) · Zbl 0845.76038
[6] Jansen, K.E.; Collis, S.S.; Shakib, F., A better consistency for low-order stabilized finite element methods, Comput. methods appl. mech. engrg., 174, 153-170, (1999) · Zbl 0956.76044
[7] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[8] Perić, D.; Slijepčević, S., Computational modelling of viscoplastic fluids based on a stabilised finite element method, Engrg. computat., 18, 577-591, (2001) · Zbl 1020.76029
[9] L.P. Franca (Ed.), Advances in stabilised methods in computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998) 1-182.
[10] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary-Lagrangian-Eulerian computing method for all flow speeds, J. computat. phys., 14, 227-253, (1974) · Zbl 0292.76018
[11] Hughes, T.J.R.; Liu, W.K.; Zimmermann, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[12] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, (), 473-516
[13] Ramaswamy, B.; Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow, Int. J. numer. methods fluids, 7, 1053-1075, (1987) · Zbl 0634.76033
[14] Huerta, A.; Liu, W.K., Viscous flow with large free surface motion, Comput. methods appl. mech. engrg., 69, 277-324, (1988) · Zbl 0655.76032
[15] Ramaswamy, B., Numerical simulation of unsteady viscous free surface flow, J. computat. phys., 90, 396-430, (1990) · Zbl 0701.76036
[16] Soulaimani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y., Finite element simulation of two- and three-dimensional free surface flows, Comput. methods appl. mech. engrg., 86, 265-296, (1991) · Zbl 0761.76037
[17] Sackinger, P.A.; Schunk, P.R.; Rao, R.R., A Newton-raphson pseudo-solid domain mapping technique for free and moving boundary problems: A finite element implementation, J. computat. phys., 125, 83-103, (1996) · Zbl 0853.65138
[18] Soulaimani, A.; Saad, Y., An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows, Comput. methods appl. mech. engrg., 162, 79-106, (1998) · Zbl 0948.76043
[19] Braess, H.; Wriggers, P., Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow, Comput. methods appl. mech. engrg., 190, 95-109, (2000) · Zbl 0967.76053
[20] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons Chichester, UK · Zbl 0959.74001
[21] Dettmer, W.; Saksono, P.H.; Perić, D., On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension, Commun. numer. methods engrg., 19, 659-668, (2003) · Zbl 1112.76387
[22] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time-procedure: part I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[23] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time-procedure: part II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[24] Masud, A.; Hughes, T.J.R., A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[25] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[26] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (2000) · Zbl 0973.76048
[27] Dettmer, W.; Perić, D., An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation, Comput. methods appl. mech. engrg., 192, 1177-1226, (2003) · Zbl 1091.76521
[28] D. Perić, P.H. Saksono, On finite element modelling of surface tension: variational formulation and applications—Part I: Quasi static problems, Comput. Mech., in press.
[29] D. Perić, P.H. Saksono, On finite element modelling of surface tension: variational formulation and applications—Part II: Dynamic problems, Comput. Mech., in press.
[30] Felippa, C.A.; Park, K.C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. methods appl. mech. engrg., 190, 3247-3270, (2001) · Zbl 0985.76075
[31] Onate, E., A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation, Comput. methods appl. mech. engrg., 182, 355-370, (2000) · Zbl 0977.76050
[32] Bar-Yoseph, P.Z.; Mereu, S.; Chippada, S.; Kalro, V.J., Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics, Computat. mech., 27, 378-395, (2001) · Zbl 1142.74378
[33] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. struct., 80, 305-316, (2002)
[34] Ramaswamy, B.; Kawahara, M., Lagrangian finite element analysis applied to viscous free surface fluid flow, Int. J. numer. methods fluids, 7, 953-984, (1987) · Zbl 0622.76031
[35] Feng, Y.T.; Perić, D., A time-adaptive space-time finite element method for incompressible Lagrangian flows with free surfaces: computational issues, Comput. methods appl. mech. engrg., 190, 499-518, (2000) · Zbl 0995.76046
[36] Pozrikidis, C., Introduction to theoretical and computational fluid dynamics, (1997), Oxford University Press · Zbl 0886.76002
[37] Dussan, E.B., On spreading of liquids on solid surfaces. static and dynamic contact lines, Ann. rev. fluid mech., 11, 371-400, (1979)
[38] Lamb, H., Hydrodynamics, (1932), Cambridge University Press Cambridge, UK · JFM 26.0868.02
[39] Foote, G.B., A numerical method for studying liquid drop behaviour: simple oscillation, J. computat. phys., 11, 507-530, (1973) · Zbl 0252.76027
[40] Eggers, J.; Dupont, T.F., Drop formulation in a one-dimensional approximation of the Navier-Stokes equation, J. fluid mech., 262, 205-221, (1994) · Zbl 0804.76027
[41] Zhang, Y.; Padgett, R.S.; Basaran, O.A., Nonlinear deformation and breakup of stretching liquid bridges, J. fluid mech., 329, 207-245, (1996) · Zbl 0899.76133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.