×

zbMATH — the first resource for mathematics

Stabilisation of spectral/\(hp\) element methods through spectral vanishing viscosity: Application to fluid mechanics modelling. (English) Zbl 1115.76060
Summary: We present a formulation of spectral vanishing viscosity (SVV) for the stabilisation of spectral/\(hp\) element methods applied to the solution of incompressible Navier-Stokes equations. We construct the SVV around a filter with respect to an orthogonal expansions, and prove that this methodology provides a symmetric semi-positive definite SVV operator. After providing a few simple one- and two-dimensional examples to demonstrate the utility of the SVV, we examine how it can be applied to a spectral/\(hp\) element discretisation of Navier-Stokes equations using a velocity correction splitting scheme. We provide three fluid flow examples to illustrate the pros and cons of this approach in terms of stability and accuracy.

MSC:
76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] von Neumann, J.; Richtmyer, R.D., A method for the numerical calculation of hydrodynamical shocks, J. appl. phys., 21, 380-385, (1950) · Zbl 0037.12002
[2] Kirby, R.M.; Karniadakis, G.E., De-aliasing on non-uniform grids: algorithms and applications, J. comput. phys., 191, 249-264, (2003) · Zbl 1161.76534
[3] Karniadakis, G.E.; Sherwin, S.J., Spectral/hp element methods for CFD, (1999), Oxford University Press · Zbl 0954.76001
[4] Gottlieb, D.; Hesthaven, J.S., Spectral methods for hyperbolic problems, J. comput. appl. math., 128, 1-2, 83-131, (2001) · Zbl 0974.65093
[5] Mullen, J.S.; Fischer, P.F., Filtering techniques for complex geometry fluid flows, Commun. numer. method engrg., 15, 9-18, (1999) · Zbl 0931.76067
[6] P.F. Fischer, J.S. Mullen, Filter-based stabilization of spectral element methods, in: Comptes Rendus de l’Acadamie des sciences Paris, t. 332, Srie I—Analyse numerique, 2001, pp. 265-270.
[7] Deville, M.O.; Mund, E.H.; Fischer, P.F., High order methods for incompressible fluid flow, (2002), Cambridge University Press · Zbl 1007.76001
[8] Karamanos, G.-S.; Karniadakis, G.E., A spectral vanishing viscosity method for large-eddy simulations, J. comput. phys., 162, 22, (2000) · Zbl 0984.76036
[9] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. numer. anal., 26, 1, 30, (1989) · Zbl 0667.65079
[10] Don, W.S., Numerical study of pseudospectral methods in shock wave applications, J. comput. phys., 110, 103, (1994) · Zbl 0797.76068
[11] Crandall, M.G.; Lions, P.L., Viscosity solutions of Hamilton-Jacobi equations, Trans. am. math. soc., 61, 629, (1983)
[12] Maday, Y.; Ould Kaber, S.M.; Tadmor, E., Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J. numer. anal., 30, 321, (1993) · Zbl 0774.65072
[13] Kirby, R.M.; Karniadakis, G.E., Coarse resolution turbulence simulations with spectral vanishing viscosity—large-eddy simulations (SVV-LES), J. fluids engrg., 124, 4, 886-891, (2002)
[14] Xu, C.; Pasquetti, R., Stabilized spectral element computations of high Reynolds number incompressible flows, J. comput. phys., 196, 680-704, (2004) · Zbl 1109.76342
[15] Sirisup, S.; Karniadakis, G.E., A spectral viscosity method for correcting the long-term behavior of POD models, J. comput. phys., 194, 92-116, (2004) · Zbl 1136.76412
[16] Dubiner, M., Spectral methods on triangles and other domains, J. sci. comput., 6, 345, (1991) · Zbl 0742.76059
[17] Karniadakis, G.E.; Israeli, M.; Orszag, S.A., High-order splitting methods for incompressible Navier-Stokes equations, J. comput. phys., 97, 414, (1991) · Zbl 0738.76050
[18] Guermond, J.L.; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. numer. anal., 41, 112-134, (2003) · Zbl 1130.76395
[19] R.M. Kirby, T.C. Warburton, S.J. Sherwin, A. Beskok, G.E. Karniadakis, The \(\mathcal{N} \boldsymbol{\&z.epsiv;} \boldsymbol{\kappa} \mathcal{T} \boldsymbol{\alpha} \boldsymbol{r}\) code: dynamic simulations without remeshing, in: Proceedings of the 2nd International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division, vol. 397, 1999.
[20] Brown, D.L.; Minion, M.L., Performance of under-resolved two-dimensional incompressible flow simulations, J. comput. phys., 122, 165-183, (1995) · Zbl 0849.76043
[21] Warburton, T.; Pavarino, L.F.; Hesthaven, J.S., A pseudo-spectral scheme for the incompressible Navier-Stokes equations using unstructured nodal elements, J. comput. phys., 164, 1-21, (2000) · Zbl 0961.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.