×

Fluctuation theorem for currents and Schnakenberg network theory. (English) Zbl 1115.82023

Summary: A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Onsager, L., Phys. Rev., 37, 405 (1931) · Zbl 0001.09501
[2] De Donder, T.; Van Rysselberghe, P., Affinity (1936), Menlo Park CA: Stanford University Press, Menlo Park CA
[3] Prigogine, I., Introduction to Thermodynamics of Irreversible Processes (1967), New York: Wiley, New York · Zbl 0115.23101
[4] Nicolis, G.; Prigogine, I., Proc. Natl. Acad. Sci. (USA), 68, 2102 (1971) · Zbl 0316.60057
[5] Nicolis, G., J. Stat. Phys., 6, 195 (1972)
[6] Malek-Mansour, M.; Nicolis, G., J. Stat. Phys., 13, 197 (1975)
[7] Nicolis, G.; Turner, J. W., Physica A, 89, 326 (1977)
[8] Nicolis, G.; Prigogine, I., Self-Organization in Nonequilibrium Systems (1977), New York: Wiley, New York · Zbl 0363.93005
[9] Luo, Jiu-li; Van den Broeck, C.; Nicolis, G., Z. Phys. B - Condensed Matter, 56, 165 (1984)
[10] Schnakenberg, J., Rev. Mod. Phys., 48, 571 (1976)
[11] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd Ed. (Springer-Verlag, 1990). · Zbl 0713.60076
[12] Kreuser, H. J.; Payne, S. H.; Borowko, M., Theoretical Approaches to the Kinetics of Adsorption, Desorption and Reactions at Surfaces, Computational Methods in Surface and Colloid Science, 439 (2000), New York: Dekker, New York
[13] Kirchhoff, G., Poggendorffs ann. Phys. Chem., 72, 495 (1847)
[14] Einstein, A., Investigations on the theory of the Brownian movement (1956), New York: Dover, New York · Zbl 0071.41205
[15] Hill, T. L.; Kedem, O., J. Theor. Biol., 10, 399 (1966)
[16] Hill, T. L., J. Theor. Biol., 10, 442 (1966)
[17] Hill, T. L., Thermodynamics for Chemists and Biologists (1968), Reading MA: Addison-Wesley, Reading MA
[18] Oster, G. F.; Desoer, C. A., J. Theor. Biol., 32, 219 (1971)
[19] Oster, G. F.; Perelson, A. S.; Katchalsky, A., Nature, 234, 393 (1971)
[20] Jiang, D.-Q.; Qian, M.; Qian, M.-P., Mathematical Theory of Nonequilibrium Steady States (2004), Berlin: Springer, Berlin · Zbl 1096.82002
[21] Qian, M.-P.; Qian, C.; Qian, M., Sci. Sinica (Series A), 27, 470 (1984) · Zbl 0543.60076
[22] Gaspard, P.; Nicolis, G., Phys. Rev. Lett., 65, 1693 (1990) · Zbl 1050.82547
[23] Dorfman, J. R.; Gaspard, P., Phys. Rev. E, 51, 28 (1995)
[24] Gaspard, P.; Dorfman, J. R., Phys. Rev. E, 52, 3525 (1995)
[25] Tasaki, S.; Gaspard, P., J. Stat. Phys., 81, 935 (1995) · Zbl 1081.37511
[26] Gaspard, P., Chaos, Scattering and Statistical Mechanics (1998), Cambridge UK: Cambridge University Press, Cambridge UK · Zbl 0915.00011
[27] Gaspard, P.; Claus, I.; Gilbert, T.; Dorfman, J. R., Phys. Rev. Lett., 86, 1506 (2001)
[28] Jarzynski, C., Phys. Rev. Lett., 78, 2690 (1997)
[29] C. Jarzynski, J. Stat. Mech. P09005 (2004).
[30] Evans, D. J.; Cohen, E. G. D.; Morriss, G. P., Phys. Rev. Lett., 71, 2401 (1993) · Zbl 0966.82507
[31] Evans, D. J.; Searles, D. J., Phys. Rev. E, 50, 1645 (1994)
[32] Gallavotti, G.; Cohen, E. G. D., Phys. Rev. Lett., 74, 2694 (1995)
[33] Gallavotti, G., Phys. Rev. Lett., 77, 4334 (1996) · Zbl 1063.82533
[34] Ruelle, D., J. Stat. Phys., 95, 393 (1999) · Zbl 0934.37010
[35] Kurchan, J., J. Phys. A: Math. Gen., 31, 3719 (1998) · Zbl 0910.60095
[36] Crooks, G. E., Phys. Rev. E, 60, 2721 (1999)
[37] Lebowitz, J. L.; Spohn, H., J. Stat. Phys., 95, 333 (1999) · Zbl 0934.60090
[38] Maes, C., J. Stat. Phys., 95, 367 (1999) · Zbl 0941.60099
[39] Maes, C.; Netočný, K., J. Stat. Phys., 110, 269 (2003) · Zbl 1035.82035
[40] Gaspard, P., J. Chem. Phys., 120, 8898 (2004)
[41] Seifert, U., Phys. Rev. Lett., 95, 040602 (2005)
[42] Amman, M.; Wilkins, R.; Ben-Jacob, E.; Maker, P. D.; Jaklevic, R. C., Phys. Rev. B, 43, 1146 (1991)
[43] Andrieux, D.; Gaspard, P., J. Chem. Phys., 121, 6167 (2004)
[44] D. Andrieux and P. Gaspard, J. Stat. Mech.: Th. Exp. P01011 (2006).
[45] Spohn, H., Rev. Mod. Phys., 53, 569 (1980)
[46] Helfand, E., Phys. Rev., 119, 1 (1960) · Zbl 0089.45103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.