Chua, Vivien P.; Porter, Mason A. Spatial resonance overlap in Bose–Einstein condensates in superlattice potentials. (English) Zbl 1115.82304 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 4, 945-959 (2006). Cited in 2 Documents MSC: 82B10 Quantum equilibrium statistical mechanics (general) 81V45 Atomic physics 37K60 Lattice dynamics; integrable lattice equations Keywords:Bose–Einstein condensates; Hamiltonian systems; Chirikov’s overlap criterion PDF BibTeX XML Cite \textit{V. P. Chua} and \textit{M. A. Porter}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 4, 945--959 (2006; Zbl 1115.82304) Full Text: DOI OpenURL References: [1] DOI: 10.1126/science.282.5394.1686 [2] DOI: 10.1126/science.269.5221.198 [3] DOI: 10.1088/0953-4075/35/24/312 [4] DOI: 10.1103/PhysRevA.67.023602 [5] DOI: 10.1103/PhysRevE.64.056615 [6] DOI: 10.1103/PhysRevLett.86.1402 [7] DOI: 10.1103/PhysRevE.63.036612 [8] DOI: 10.1103/PhysRevLett.85.86 [9] DOI: 10.1016/S0167-2789(01)00355-4 · Zbl 0996.35071 [10] DOI: 10.1063/1.882899 [11] Cataliotti F. S., New J. Phys. 5 pp 71.1– [12] DOI: 10.1103/RevModPhys.71.463 [13] DOI: 10.1103/PhysRevLett.75.3969 [14] DOI: 10.1038/35085500 [15] DOI: 10.1016/j.optcom.2004.10.036 [16] Goldstein H., Classical Mechanics (1980) [17] DOI: 10.1038/415039a [18] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001 [19] DOI: 10.1063/1.882898 [20] DOI: 10.1103/PhysRevLett.89.210404 [21] DOI: 10.1007/978-1-4757-3980-0 [22] DOI: 10.1007/978-1-4757-2184-3 [23] DOI: 10.1088/1464-4266/6/5/020 [24] DOI: 10.1103/PhysRevA.71.023612 [25] DOI: 10.1103/PhysRevLett.87.140402 [26] DOI: 10.1126/science.1058149 [27] DOI: 10.1103/PhysRevLett.87.220401 [28] DOI: 10.1103/PhysRevA.67.051603 [29] Pethick C. J., Bose–Einstein Condensation in Dilute Gases (2002) [30] Porter M. A., Phys. Rev. E pp 047201– [31] DOI: 10.1063/1.1779991 · Zbl 1080.82017 [32] DOI: 10.1137/040610611 · Zbl 1145.82309 [33] DOI: 10.1016/j.physleta.2005.11.074 · Zbl 1187.78056 [34] DOI: 10.1098/rsta.2003.1211 [35] Rand R. H., Computation in Education: Mathematics, Science and Engineering 1, in: Topics in Nonlinear Dynamics with Computer Algebra (1994) [36] DOI: 10.1103/PhysRevA.69.033610 [37] DOI: 10.1088/0953-4075/35/14/315 [38] DOI: 10.1103/PhysRevLett.89.170402 [39] DOI: 10.1103/PhysRevLett.93.220502 [40] DOI: 10.1023/A:1017931712099 · Zbl 1003.34041 [41] DOI: 10.1016/S0020-7462(00)00095-0 · Zbl 1116.34322 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.