×

zbMATH — the first resource for mathematics

The stable \(\mathbb{A}^1\)-connectivity theorems. (English) Zbl 1117.14023
A sheaf of \(S^1\)-spectra \(E\) on the category of smooth schemes over \(S\) in the Nisnevich topology is said to be \((-1)\)-connected if all its negative homotopy sheaves vanish. One says that the stable \(\mathbb A^1\)-connectivity property holds over \(S\) if the \(\mathbb A^1\)-localization functor preserves \((-1)\)-connected sheaves. The main result of the paper is that the stable \(\mathbb A^1\)-connectivity property holds when the base \(S\) is the spectrum of a field. The proof essentially uses Gabber’s presentation lemma over infinite fields. As a consequence the author proves that for any sheaf of spectra \(E\) defined over a field its \(\mathbb A^1\)-homotopy sheaves are strictly \(\mathbb A^1\)-invariant. In particular, it holds for the sheaf of Balmer-Witt groups. In the language of stable homotopy categories it also implies that there is a \(t\)-structure on the stable \(\mathbb A^1\)-homotopy category of \(S^1\)-spectra whose heart consists of strictly \(\mathbb A^1\)-invariant sheaves. This \(t\)-structure can be viewed as a direct analogue in the stable \(\mathbb A^1\)-homotopy theory of Voevodsky’s homotopy \(t\)-structure for the triangulated category \(\text{DM}^{\text{eff}}\) over a perfect field. As an important application the author proves the Gersten conjecture for pure sheaves over a field, e.g., strictly \(\mathbb A^1\)-homotopy invariant sheaves. He also discusses the finitness properties of \(\mathbb A^1\)-homotopy groups.

MSC:
14F35 Homotopy theory and fundamental groups in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[5] Beilinson A., Bernstein. and Deligne P. Faisceaux pervers, (French) [Perverse sheaves] Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris (1982).
[6] Bousfield A.K., Friedlander E.M.: Homotopy theory of \(\Gamma\)-spaces, spectra, and bisimplicial sets, in Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., Vol. 658, Springer, Berlin (1978), pp. 80–130 · Zbl 0405.55021
[7] Brown K.S., Gersten S.M.: Algebraic K-theory as Generalized Sheaf Cohomology. in: Algebraic K-Theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin (1973), pp. 266–292
[8] Bloch S., Ogus A. Gersten’s conjecture and the homology of schemes, Ann. Sci. Ec. Nom. Sup. 4 série 7, 181–202 · Zbl 0307.14008
[9] Colliot-Thélène J.-L., Hoobler R.T., Kahn B. The Bloch–Ogus–Gabber theorem. (English. English summary) Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun., Vol. 16, Amer. Math. Soc., Providence, RI (1997), pp. 31–94. · Zbl 0911.14004
[10] Déglise, F.: Modules homotopiques avec transferts et motifs génériques, Thèse de l’Université Paris 7, 2002 Available at http://www.math.jussieu.fr/\(\sim\)deglise/.
[11] Déglise, F.: Modules de cycles et motifs mixtes, C.R. Acad. Sci. Paris, t. Comptes rendus Mathématiques, t. 336, (Série I), 41–46. · Zbl 1042.19001
[12] Faltings G. Finiteness Theorems for Abelian Varieties over Number Fields, in G. Cornell and J. Silverman (eds.), Arithmetic Geometry Springer–Verlag (1986). · Zbl 0602.14044
[14] Grothendieck A., Dieudonné, J.: Éléments de géométrie algébrique. IV, \(\backslash\)’Etude locale des schémas et des morphismes de schémas IV, (French) Inst. Hautes Études Sci. Publ. Math. No. 32 (1967), 361 pp.
[15] Goerss P., Jardine J.F.: Simplicial Homotopy Theory, Progress in Mathematics, 174. Birkhäuser Verlag, Basel (1999), xvi+510 pp. · Zbl 0949.55001
[16] Hornbostel J. A1-representability of hermitian K-theory and Witt groups, Preprint, available at http://www.math.uiuc.edu/K-theory/0578/ . · Zbl 1078.19004
[18] Hu P. S-modules in the category of schemes, Mem. Am. Math. Soc. 161 (767) (2003)
[19] Kato K. Milnor K-theory and the Chow group of zero cycles, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colo., 1983), 241–253, Contemp. Math., 55, Amer. Math. Soc., Providence, RI (1986).
[20] Knus M.-A.: Quadratic and Hermitian forms over Rings, With a foreword by I. Bertuccioni. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 294 Springer-Verlag, Berlin (1991).
[23] Jardine J.F.: Motivic symmetric spectra, (English. English summary) Doc. Math. 5 (2000), 445–553 (electronic). · Zbl 0969.19004
[24] May J.P.: Simplicial Objects in Algebraic Topology. Reprint of the 1967 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1992). · Zbl 0769.55001
[25] Morel F. Théorie homotopique des schémas, Astérisque (1999).
[26] Morel F. Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques C.R. Acad. Sci. Paris, t. 328 (Série I), (1999), 963–968 · Zbl 0937.19002
[27] Morel F. An introduction to \(\mathbb{A}^1\) -homotopy theory, in Karoubi, Kuku and Pedrini (eds), Contemporary Developments in Algebraic K-theory, ICTP Lecture notes, Vol. 15 (2003). · Zbl 1081.14029
[28] Morel F. On the motivic \(\pi\)0 of the sphere spectrum, in J.P.C. Greenlees (ed.), Axiomatic, Enriched and Motivic Homotopy Theory, Kluwer Academic Publishers (2004), 219–260 · Zbl 1130.14019
[29] Morel F. On the structure of \(\mathbb{A}^1\) -homotopy sheaves I & II, preprints, available at http://www.mathematik.uni-muenchen.de/\(\sim\)morel/listepublications.html
[30] Morel F. Rationalized motivic sphere spectrum and rational motivic cohomology, in preparation.
[31] Morel F., Voevodsky V. : \(\mathbb{A}^1\) -homotopy theory of schemes, Publications Mathématiques de l’I.H.É.S. no 90.
[32] Nisnevich Y. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, in Algebraic K-Theory: Connections with Geometry and Topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 279, Kluwer Acad. Publ., Dordrecht (1989), pp. 241–342
[33] Quillen D.G.: Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., Vol. 341, Springer, Berlin (1973), pp. 85–147 · Zbl 0292.18004
[37] Suslin A., Voevodsky V. Bloch–Kato conjecture and motivic cohomology with finite coefficients, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., Vol. 548, Kluwer Acad. Publ., Dordrecht (2000), pp. 117–189 · Zbl 1005.19001
[38] Suslin A., Voevodsky V. Relative cycles and Chow sheaves, in Cycles, transfers, and Motivic Homology Theories, Ann. of Math. Stud., Vol. 143, Princeton Univ. Press, Princeton, NJ (2000), pp. 10–86. · Zbl 1019.14004
[39] Voevodsky V. Cohomological theory of presheaves with transfers, in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ (2000), pp. 87–137 · Zbl 1019.14010
[40] Voevodsky V. Triangulated categories of motives over a field, in Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., Vol. 143, Princeton Univ. Press, Princeton, NJ (2000), pp. 188–238 · Zbl 1019.14009
[41] Voevodsky V. The \(\mathbb{A}^1\) -homotopy theory, Proceedings of the international congress of mathematicians, Berlin (1998). · Zbl 0907.19002
[42] Voevodsky V. Cancellation theorem, preprint, available at http://www.math.uiuc.edu/ K-theory/0541/index.html . · Zbl 1202.14022
[43] Voevodsky V. Unstable motivic homotopy categories in Nisnevich and cdh-topologies, Preprint, available at http://www.math.uiuc.edu/K-theory/0444/ . · Zbl 1187.14025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.