×

On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. (English) Zbl 1117.35063

The authors study vanishing viscosity limit for 3D Navier-Stokes equations with slip boundary conditions for a 3D smooth, bounded, simply connected domain. They show that the limiting case is described by the ideal Euler system with a Navier-type slip boundary condition and the same initial data as for the Navier-Stokes system.

MSC:

35Q30 Navier-Stokes equations
76D09 Viscous-inviscid interaction
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Achdou, J Comput Phys 147 pp 187– (1998)
[2] Alekseenko, Sibirsk Mat Zh 35 pp 235– (1994)
[3] Siberian Math J 35 pp 209– (1994)
[4] Bänsch, Numer Math 88 pp 203– (2001)
[5] Beavers, J Fluid Mech 30 pp 197– (1967)
[6] Beirão da Veiga, Comm Pure Appl Math 58 pp 552– (2005)
[7] Bourguignon, J Funct Anal 15 pp 341– (1974)
[8] Busuioc, Nonlinearity 16 pp 1119– (2003)
[9] Cantarella, Amer Math Monthly 109 pp 409– (2002)
[10] Cioranescu, Math Methods Appl Sci 19 pp 857– (1996)
[11] Clopeau, Nonlinearity 11 pp 1625– (1998)
[12] Conca, Japan J Math (NS) 20 pp 279– (1994)
[13] ; Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988.
[14] Constantin, Nonlinearity 8 pp 735– (1995)
[15] Ebin, Ann of Math (2) 92 pp 102– (1970)
[16] Fujita, J Comput Appl Math 149 pp 57– (2002)
[17] An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, 38. Springer, New York, 1994. · Zbl 0949.35004
[18] Galdi, Math Models Methods Appl Sci 10 pp 343– (2000)
[19] Itoh, J Math Fluid Mech 5 pp 275– (2003)
[20] Jäger, SIAM J Appl Math 60 pp 1111– (2000)
[21] Jäger, J Differential Equations 170 pp 96– (2001)
[22] John, J Comput Appl Math 147 pp 287– (2002)
[23] Kato, J Functional Analysis 9 pp 296– (1972)
[24] Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 85–98. Mathematical Sciences Research Institute Publications, 2. Springer, New York, 1984.
[25] Kato, J Funct Anal 56 pp 15– (1984)
[26] Liakos, Numer Methods Partial Differential Equations 17 pp 26– (2001) · Zbl 0978.76051
[27] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris, 1969.
[28] Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and Its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.
[29] Marušić-Paloka, J Math Anal Appl 259 pp 685– (2001)
[30] Mucha, Acta Appl Math 76 pp 1– (2003)
[31] Navier, Mem Acad R Sci Inst France 6 pp 369– (1827)
[32] Über Flüssigkeitsbewegungen bei sehr Kleiner Reibung. Verh. III Int. Math.-Kongr. (Heidelberg 1904), 484–494. Teubner, Leipzig, 1905.
[33] Qian, Phys Rev E 68 pp 016306– (2003)
[34] Saffman, Stud Appl Math 1 pp 93– (1971) · Zbl 0271.76080
[35] Sammartino, Comm Math Phys 192 pp 433– (1998)
[36] Comm Math Phys 192 pp 463– (1998)
[37] Hodge decomposition–a method for solving boundary value problems. Lecture Notes in Mathematics, 1607. Springer, Berlin, 1995. · Zbl 0828.58002
[38] Mathematical principles of classical fluid mechanics. Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), 125–263. Springer, Berlin-Göttingen-Heidelberg, 1959.
[39] Silliman, J Comput Phys 34 pp 287– (1980)
[40] Simon, Ann Mat Pura Appl (4) 146 pp 65– (1987)
[41] Solonnikov, Trudy Mat Inst Steklov 125 pp 196– (1973)
[42] Proc Steklov Inst Math 125 pp 186– (1973)
[43] Swan, Trans Amer Math Soc 157 pp 373– (1971)
[44] Temam, Ann Scuola Norm Sup Pisa Cl Sci (4) 25 pp 807– (1997)
[45] Temam, J Differential Equations 179 pp 647– (2002)
[46] von Wahl, Math Methods Appl Sci 15 pp 123– (1992)
[47] Wang, Indiana Univ Math J 50 pp 223– (2001) · Zbl 0991.35059
[48] Wang, SIAM J Math Anal 37 pp 1256– (2005)
[49] Watanabe, J Comput Appl Math 159 pp 161– (2003)
[50] Xin, Comm Pure Appl Math 52 pp 479– (1999)
[51] Xin, Adv Math 181 pp 88– (2004)
[52] Yoshida, Math Z 204 pp 235– (1990)
[53] Yudovich, Mat Sb 4 pp 562– (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.