## Homoclinic orbits for a nonperiodic Hamiltonian system.(English)Zbl 1117.37032

Consider the first order Hamiltonian system $$\overset{.}{z}={\mathcal J}H_{z}(t,z)$$ where $$z=(p,q)\in {\mathbb R}^{2N},{\mathcal J} =\left( \begin{matrix} 0 & -I \\ I & 0 \end{matrix} \right)$$ and $$H\in C^{1}({\mathbb R}\times {\mathbb R}^{2N},{\mathbb R})$$ has the form $$H\left( t,z\right)=\frac{1}{2}L\left( t\right) z\cdot z+R\left( t,z\right)$$ with $$L\left( t\right)$$ a continuous symmetric $$2N\times 2N$$ matrix-valued function, $$R_{z}\left( t,z\right) =o\left(| z| \right)$$ as $$z\rightarrow 0$$ and asymptotically linear as $$| z| \rightarrow \infty$$. A solution $$z$$ of this system is a homoclinic orbit if $$z\neq 0$$ and $$z\left( t\right) \rightarrow 0$$ as $$| t| \rightarrow \infty$$. The existence and multiplicity of homoclinic orbits is studied without assuming periodicity conditions.

### MSC:

 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)

### Keywords:

Hamiltonian system; asymptotically linear
Full Text:

### References:

  Ackerman, N., On a periodic Schrödinger equation with nonlocal part, Math. Z., 248, 423-443, (2004)  Arioli, G.; Szulkin, A., Homoclinic solutions of Hamiltonian systems with symmetry, J. differential equations, 158, 291-313, (1999) · Zbl 0944.37030  Bartsch, T.; Ding, Y.H., On a nonlinear Schrödinger equations, Math. ann., 313, 15-37, (1999) · Zbl 0927.35103  Bartsch, T.; Ding, Y.H., Solutions of nonlinear Dirac equations, J. differential equations, 226, 210-249, (2006) · Zbl 1126.49003  Bartsch, T.; Ding, Y.H., Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. nachr., 279, 1267-1288, (2006) · Zbl 1117.58007  Coti-Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. ann., 288, 133-160, (1990) · Zbl 0731.34050  Ding, Y.H.; Girardi, M., Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear anal., 38, 391-415, (1999) · Zbl 0938.37034  Y.H. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, in press  Ding, Y.H.; Willem, M., Homoclinic orbits of a Hamiltonian system, Z. angew. math. phys., 50, 759-778, (1999) · Zbl 0997.37041  Edmunds, D.E.; Evans, W.D., Spectral theory and differential operators, (1987), Clarendon Press Oxford · Zbl 0628.47017  Hofer, H.; Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. ann., 288, 483-503, (1990) · Zbl 0702.34039  Jeanjean, L., On the existence of bounded palais – smale sequences and applications to a landesman – lazer-type problem set on $$\mathbf{R}^N$$, Proc. roy. soc. Edinburgh sect. A, 129, 787-809, (1999) · Zbl 0935.35044  Jeanjean, L.; Tanaka, K., A positive solution for an asymptotically linear elliptic problem on $$\mathbf{R}^N$$ autonomous at infinity, ESAIM control optim. calc. var., 7, 597-614, (2002) · Zbl 1225.35088  Kryszewski, W.; Szulkin, A., Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. differential equations, 3, 441-472, (1998) · Zbl 0947.35061  Triebel, H., Interpolation theory, function spaces, differential operators, (1978), North-Holland Amsterdam · Zbl 0387.46032  Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 27-42, (1992) · Zbl 0725.58017  Séré, E., Looking for the Bernoulli shift, Ann. inst. H. Poincaré anal. non linéaire, 10, 561-590, (1993) · Zbl 0803.58013  Stuart, C.A.; Zhou, H.S., Axisymmetric TE-modes in a self-focusing dielectric, SIAM J. math. anal., 137, 1, 218-237, (2005) · Zbl 1099.78013  Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. funct. anal., 187, 25-41, (2001) · Zbl 0984.37072  Tanaka, K., Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits, J. differential equations, 94, 315-339, (1991) · Zbl 0787.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.