zbMATH — the first resource for mathematics

A generalization of the Lindeberg principle. (English) Zbl 1117.60034
The author establishes the following inequality: Let \({\mathbf X}= (X_1,\dots, X_n)\) and \({\mathbf Y}= (Y_1,\dots, Y_n)\) be random vectors in \(\mathbb{R}^n\) with the \(Y_i\) being independent. Let \(f: \mathbb{R}^n\to\mathbb{R}\) be a thrice continuously differentiable function whose \(r\)-fold derivatives are uniformly bounded by \(L_r(f)\) \((r= 1,2,3)\). For each \(1\leq i\leq n\), let \[ A_i= E|E(X_i|X_1,\dots, X_{i-1})- EY_i|,\quad B_i= E|E(X^2_i|X_1,\dots, X_{i-1})- EY^2_i|, \]
\[ \max_{1\leq i\leq n}|E|X_i|^3+ E|Y_i|^3| \leq M_3. \] Then \[ |Ef({\mathbf X})- Ef({\mathbf Y})|\leq \sum^n_{i=1} (A_i L_1(f)+ \textstyle{{1\over 2}} B_i L_2(f))+ \textstyle{{1\over 6}} nL_3(f) M_3. \] Using this result, the author shows a similar one for smooth functions of exchangeable random variables, which enables us to get the limiting spectral distributions of Wigner matrices with exchangeable entries.

60F17 Functional limit theorems; invariance principles
60G09 Exchangeability for stochastic processes
15B52 Random matrices (algebraic aspects)
Full Text: DOI arXiv
[1] Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl. 20 262–268. · Zbl 0246.60029
[2] Bai, Z. D. (1999). Methodologies in the spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611–677. · Zbl 0949.60077
[3] Baik, J. and Suidan, T. M. (2005). A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. 6 325–337. · Zbl 1136.60313
[4] Bodineau, T. and Martin, J. (2005). A universality property for last-passage percolation paths close to the axis. Electron. Comm. Probab. 10 105–112. · Zbl 1111.60068
[5] Chatterjee, S. (2004). A simple invariance theorem. Available at http://arxiv.org/math.PR/0508213.
[6] de Finetti, B. (1969). Sulla prosequibilità di processi aleatori scambiabili. Rend. Ist. Mat. Univ. Trieste 1 53–67. · Zbl 0218.60106
[7] Boutet de Monvel, A. and Khorunzhy, A. (1998). Limit theorems for random matrices. Markov Process. Related Fields 4 175–197. · Zbl 0917.60040
[8] Diaconis, P. and Freedman, D. (1980). Finite exchangeable sequences. Ann. Probab. 8 745–764. · Zbl 0434.60034
[9] Girko, V. L. (1988). Spectral Theory of Random Matrices . Nauka, Moscow. · Zbl 0656.15012
[10] Grenander, U. (1963). Probabilities on Algebraic Structures . Wiley, New York. · Zbl 0131.34804
[11] Khorunzhy, A. M., Khoruzhenko, B. A. and Pastur, L. A. (1996). Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 5033–5060. · Zbl 0866.15014
[12] Lindeberg, J. W. (1922). Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung. Math. Z. 15 211–225. · JFM 48.0602.04
[13] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2005). Noise stability of functions with low influences: Invariance and optimality. Available at http://arxiv.org/math.PR/0503503. · Zbl 1201.60031
[14] Pastur, L. A. (1972). The spectrum of random matrices. Teoret. Mat. Fiz. 10 102–112.
[15] Paulauskas, V. and Račkauskas, A. (1989). Approximation Theory in the Central Limit Theorem. Exact Results in Banach Spaces . Kluwer, Dordrecht. · Zbl 0715.60023
[16] Rotar, V. I. (1979). Limit theorems for polylinear forms. J. Multivariate Anal. 9 511–530. · Zbl 0426.62013
[17] Schenker, J. H. and Schulz-Baldes, H. (2005). Semicircle law and freeness for random matrices with symmetries or correlations. Math. Res. Lett. 12 531–542. · Zbl 1095.82004
[18] Suidan, T. (2006). A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 8977–8981. · Zbl 1148.82014
[19] Talagrand, M. (2003). Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models . Springer, Berlin. · Zbl 1033.82002
[20] Trotter, H. F. (1959). Elementary proof of the central limit theorem. Archiv der Mathem. 10 226–234. · Zbl 0086.34002
[21] Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 325–327. JSTOR: · Zbl 0085.13203
[22] Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem . Clarendon Press, Oxford. · Zbl 0258.65037
[23] Zolotarev, V. M. (1977). Ideal metrics in the problem of approximating the distributions of sums of independent random variables. Theory Probab. Appl. 22 449–465. · Zbl 0385.60025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.