Mean-variance optimal reinsurance arrangements. (English) Zbl 1117.62115

The aim of this paper is to derive optimal, from a cedant’s point of view, reinsurance arrangements balancing the risk measured by variance and expected gain under various mean-variance premium principles of the reinsurer. The author’s approach is related to the Markowitz methodology of optimal portfolios. It is proved that quota share, excess of loss or combination of excess of loss with quota share are optimal rules according to a fixed expected gain of cedants.


62P05 Applications of statistics to actuarial sciences and financial mathematics
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI


[1] DOI: 10.1007/s007800050075 · Zbl 0958.91026
[2] Bühlmann H, Mathematical Models in Risk Theory (1996)
[3] DOI: 10.2143/AST.15.1.2015034
[4] Centeno ML, Insurance and Risk Theory, D. Reidel Publishing Company pp pp. 247–266– (1986)
[5] DOI: 10.2143/AST.21.1.2005400
[6] Centeno ML, Scandinavian Actuarial Journal pp 97– (1991)
[7] DOI: 10.2143/AST.27.1.542067
[8] Centeno ML, Centre for Actuarial Studies, University of Melborne. Working Paper Series 80 (2000)
[9] Daykin CD, Practical Risk Theory for Actuaries (1993)
[10] DOI: 10.1016/S0167-6687(98)00042-0 · Zbl 0931.62088
[11] DOI: 10.2143/AST.27.2.542048
[12] Embrechts P, Modelling Extremal Events (1997)
[13] DOI: 10.1016/S0167-6687(99)00063-3 · Zbl 0964.62099
[14] Gerathewohl K, Reinsurance Principles and Practice (1980)
[15] Gerber HU, An Introduction to Mathematical Risk Theory, S.S. Huebner Foundation Monographs. University of Pennsylvania (1979)
[16] Goovaerts MJ, Insurance Premiums (1984)
[17] Hart DG, The Actuarial Practice of General Insurance (1996)
[18] Hesselager O, Scandinavian Actuarial Journal pp 80– (1990)
[19] Højgaard B, Scandinavian Actuarial Journal pp 166– (1998)
[20] DOI: 10.1016/S0167-6687(00)00066-4 · Zbl 1009.62096
[21] DOI: 10.2143/AST.27.2.542069
[22] Lehrke TA, Reinsurance 1997, Strain Publishing & Seminars pp 244– (1997)
[23] Mazur T, Wydzial FTIMS PL, Lodz pp 1– (2000)
[24] Pesonen MI, Scandinavian Actuarial Journal pp 65– (1984)
[25] Rolski T, Stochastic Processes for Insurance and Finance (1998)
[26] DOI: 10.2143/AST.30.1.504632 · Zbl 1018.91027
[27] Schmitter H, Swiss Re Publications (2001)
[28] Schmidli H, Scandinavian Actuarial Journal pp 55– (2001)
[29] Straub E, Non-Life Insurance Mathematics (1988) · Zbl 0677.62098
[30] Waters H, Scandinavian Actuarial Journal pp 37– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.