A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II: The discrete-in-time case. (English) Zbl 1117.74016

Summary: In this paper, we formulate a finite element procedure for approximating the coupled fluid and mechanics in Biot’s consolidation model of poroelasticity. Here, we approximate the pressure by a mixed finite element method and the displacements by a Galerkin method. Theoretical convergence error estimates are derived in a discrete-in-time setting. Of particular interest is the case when the lowest-order Raviart-Thomas approximating space or cell-centered finite differences are used in the mixed formulation and continuous piecewise linear approximations are used for displacements. This approach appears to be the one most frequently applied to existing reservoir engineering simulators.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage


Zbl 1117.74015


Full Text: DOI


[1] Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—A general purpose object oriented finite element library. Report ISC-06-02-MATH, Institute for Scientific Computation, Texas A&M University, College Station (2006) · Zbl 1365.65248
[2] Barry, S.; Mercer, G., Exact solutions for two-dimensional time dependent flow and deformation within a poroelastic medium, J. Appl. Mech., 66, 536-540 (1999)
[3] Biot, M., General theory of three-dimensional consolidation, J. Appl. Phys., 2, 155-164 (1941) · JFM 67.0837.01
[4] Biot, M., Theory of elasticity and consolidation for a porous anisotropic media, J. Appl. Phys., 26, 2, 182-185 (1955) · Zbl 0067.23603
[5] Brenner, S.; Scott, L., The Mathematical Theory of Finite Element Methods (1994), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0804.65101
[6] Coussy, O., Poromechanics (2004), New York: Wiley, New York
[7] Gautschi, W., Numerical Analysis: An Introduction (1997), Boston: Birkhäuser, Boston · Zbl 0877.65001
[8] Lipnikov, K.: Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002)
[9] Murad, M.; Loula, A., Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Eng., 95, 359-382 (1992) · Zbl 0760.73068
[10] Nedelec, J., Mixed finite elements in \({\mathbb R3}\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[11] Phillips, P.J.,Wheeler,M.F.: A coupling of mixed and continuous Galerkin finite elements for poroelasticity I: the continuous in time case. Comput. Geosci. doi:10.1007/s10596-007-9045-y (2007) · Zbl 1117.74015
[12] Raviart, R.; Thomas, J.; Galligani, I.; Magenes, E., Mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, 292-315 (1977), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York
[13] Rivière, B.; Wheeler, M.; Cockburn, B.; Karniadakis, G.; Shu, C.-W., Discontinuous Galerkin method applied to non- linear parabolic problems, Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes in Computational Science and Engineering Edition, vol. 11 (1999), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York
[14] Rivière, B., Wheeler, M.: Optimal error estimates applied to linear elasticity. Technical Report, ICES Report. ICES, Austin (2000)
[15] Showalter, R. E., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 310-340 (2000) · Zbl 0979.74018
[16] Terzaghi, K.: Die Berechnung der Durchlassigkeits-ziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzung Berichte. Akadamie der Wissenschaften, Wien Mathematisch-Naturwissenschaftliche Klasse, Abteilung IIa. 132, 105-124 (1923)
[17] Terzaghi, K., Principle of Soil Mechanics. A Series of Articles (1925), New York: McGraw-Hill, New York
[18] Wheeler, M. F., A priori L^2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759 (1973) · Zbl 0258.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.