×

zbMATH — the first resource for mathematics

Energy associated with the Gibbons-Maeda dilaton spacetime. (English) Zbl 1117.83061
Summary: In order to obtain energy and momentum (due to matter and fields including gravitation) distributions of the Gibbons-Maeda dilaton spacetime, we use the Møller energy-momentum prescription both in Einstein’s theory of general relativity and teleparallel gravity. We find the same energy distribution for a given metric in both of these different gravitation theories. Under two limits, we also calculate energy associated with two other models such as the Garfinkle-Horowitz-Strominger dilaton spacetime and the Reissner-Nordström spacetime. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid in any teleparallel model. Our result also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution for a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of energy and momentum (c) the hypothesis of Vagenas that there is a connection between the coefficients of the energy-momentum expression of Einstein and those of Møller.

MSC:
83C57 Black holes
83C40 Gravitational energy and conservation laws; groups of motions
83C50 Electromagnetic fields in general relativity and gravitational theory
Software:
Mathematica
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. A. Einstein, Sitzungsber. Preus. Akad. Wiss. Berlin (Math. Phys.) 48, 778 (1915), Addendum, ibid. 799 (1915).
[2] 2. Chia-Chen Chang, J. M. Nester, and Chiang-Mei Chen, Phys. Rev. Lett. 83, 1897 (1999). · Zbl 0951.83012
[3] 3. R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford University Press, 1934), p. 227. A. Papapetrou, Proc. R. Irish. Acad. A 52, 11 (1948). P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953). C. Møller, Ann. Phys. (NY) 4, 347 (1958). Ann. Phys. (NY) 12, 118 (1961). L.D. Landan and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1987). S. Weinberg, Gravitation and Cosmology: Principle and Applications of General Theory of Relativity (Wiley, New York, 1972). A. Qadir and M. Sharif, Phys. Lett. A 167, 331 (1992).
[4] 4. G. Lessner, Gen. Rel. Gravit. 28, 527 (1996). · Zbl 0855.53059
[5] 5. K.S. Virbhadra, Phys. Rev. D 60, 104041 (1999).
[6] 6. K.S. Virbhadra, Phys. Rev. D 41, 1086 (1990); 42, 2919 (1990); Pramana J. Phys. 45, 215 (1995). N. Rosen and K. S. Virbhadra, Gen. Rel. Gravit. 25, 429 (1993). A. Chamorro and K. S. Virbhadra, Pramana J. Phys. 45, 181 (1995); Int. J. Mod. Phys. D 5, 251 (1996). J. M. Aguirregabiria, A. Chamorro, and K.S. Virbhadra, Gen. Rel. Gravit. 28, 1393 (1996). S. S. Xulu, hep-th/0308077; Int. J. Mod. Phys. D 7 (1998), 773; Int. J. Mod. Phys. A 15 (2000), 2979. E. C. Vagenas, Int. J. Mod. Phys. A 18, 5781 (2003). Int. J. Mod. Phys. A 18, 5949 (2003); Mod. Phys. Lett. A 19, 213 (2004); Int. J. Mod. Phys. D 14, 573 (2005). I. Radinschi, Fizika B 9, (2000) 43; Chin. J. Phys. 42 (2004) 40; Fizika B 14 (2005) 3; Mod. Phys. Lett. A 17 (2002) 1159; U.V.T., Physics Series 42 (2001) 11; Mod. Phys. Lett. A 16 (2001) 673; Acta Phys. Slov. 49 (1999) 789; Acta Phys. Slov. 50 (2000) 609; Mod. Phys. Lett. A 15 (2000) 803. Th. Grammenos and I. Radinschi, gr-qc/0602105. I-Ching Yang and I. Radinschi, Chin. J. Phys. 41 (2003) 326. · Zbl 0983.83501
[7] 7. T. Vargas, Gen. Rel. Gravit. 36, 1255 (2004). G. G. L. Nashed, Phys. Rev. D 66, 064015 (2002). · Zbl 1055.83013
[8] 8. F. I. Mikhail, M. I. Wanas, A. Hindawi, and E. I. Lashin, Int. J. Theor. Phys. 32, 1627 (1993). · Zbl 0785.53062
[9] 9. M. Salti and A. Havare, Int. J. Mod. Phys. A 20 (2005) 2169. M. Salti, Astrophys. Space Sci. 299 (2005) 159; Mod. Phys. Lett. A 20 (2005) 2175; Acta Phys. Slov. 55 (2005) 563; Czech. J. Phys. 56 (2006) 177; Int. J. Mod. Phys. D 15 (2006) 695.
[10] 10. M. Salti and O. Aydogdu, Found. Phys. Lett. 19 (2006) 269; Int. J. Theor. Phys., to appear [gr-qc/0511030]; O. Aydogdu and M. Salti, Astrophys. Space Sci., 302 (2006) 61; Prog. Theor. Phys. 115 (2006) 63. · Zbl 1119.83319
[11] 11. O. Aydogdu, Int. J. Mod. Phys. A, to appear [gr-qc/0601070]; Int. J. Mod. Phys. D, to appear [gr-qc/0509047]; to appear [gr-qc/0602070].
[12] 12. O. Aydogdu, M. Salti, and M. Korunur, Acta Phys. Slov. 55 (2005) 537; A. Havare, M. Korunur, and M. Salti, Astrophys. Space Sci. 301 (2006) 43.
[13] 13. E. C. Vagenas, arXiv: gr-qc/0602107.
[14] 14. G. W. Gibbons and K. Meada, Nucl. Phys. B 298 (1988) 741.
[15] 15. S. Chen and J. Jing, Class. Quant. Grav. 22 (2005) 2159. · Zbl 1071.83020
[16] 16. H. P. Robertson, Ann. of Math. (Princeton) 33, 496 (1932). · Zbl 0005.11902
[17] 17. R. Weitzenböck, Invarianten Theorie (Noordhoff, Groningen, 1923).
[18] 18. K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1978). · Zbl 1267.83090
[19] 19. V. V. de Andrade and J. G. Pereira, Phys. Rev. D 56, 4689 (1997).
[20] 20. C. Møller, Mat. Fys. Medd. K. Vidensk. Selsk. 39, 13 (1978); Mat. Fys. Medd. K. Vidensk. Selsk. 1, 10 (1961).
[21] 21. D. Saez, Phys. Rev. D 27, 2839 (1983).
[22] 22. H. Meyer, Gen. Rel. Gravit. 14, 531 (1982).
[23] 23. K. Hayashi and T. Shirafuji, Prog. Theor. Phys. 64, 866 (1980); 65, 525 (1980).
[24] 24. F. W. Hehl, J. Nitsch and P. von der Heyde, in General Relativity and Gravitation, A. Held, ed. (Plenum, New York, 1980).
[25] 25. Wolfram Research, Mathematica 5.0 (2003).
[26] 26. TCI Software Research, Scientific Workplace 3.0 (1998).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.