×

Realization of isotropy of the lattice Boltzmann method via rotation of lattice velocity bases. (English) Zbl 1118.76052

Summary: We present a detailed algorithm of rotationally invariant lattice Boltzmann method. The suggested approach overcomes discrete artifacts present in the standard lattice Bhatnagar, Gross and Krook model by introducing a generalized particle collision operator in arbitrarily rotated frames. We demonstrate that Navier-Stokes equations are exactly recovered through the Chapman-Enskog expansion, and present two computational cases that show independence of numerical results relative to the lattice orientation.

MSC:

76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wolfram, S., Cellular automation fluids.1. Basic theory, J. Stat. Phys., 45, 471 (1986) · Zbl 0629.76002
[2] Frisch, U., Lattice gas hydrodynamics in two and three dimensions, Complex Syst., 1, 649-707 (1987) · Zbl 0662.76101
[3] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann-equation – theory and applications, Phys. Rep., 222, 145 (1992)
[4] Chen, S.; Doolen, G., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329 (1998) · Zbl 1398.76180
[5] Chen, H.; Zhang, R.; Staroselsky, I.; Jhon, M., Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows, Physica A, 362, 1, 125 (2006)
[6] Xu, K., Super-Burnett solutions for Poiseuille flow, Phys. Fluids, 15, 7, 2077 (2003) · Zbl 1186.76579
[7] Toschi, F.; Succi, S., Lattice Boltzmann method at finite Knudsen numbers, Europhys. Lett., 6944, 549 (2005)
[8] Zhou, Y.; Zhang, R.; Staroselsky, I.; Chen, H.; Kim, W. T.; Jhon, M., Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Physica A, 362, 1, 68 (2006)
[9] Nie, X.; Doolen, G.; Chen, S., Lattice-Boltzmann simulations of fluid flows in MEMS, J. Stat. Phys., 107, 1-2, 279 (2002) · Zbl 1007.82007
[10] Latt, J.; Chopard, B., Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simulat., 72, 2-6, 165 (2006) · Zbl 1102.76056
[11] Zhang, R.; Shan, X.; Chen, H., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation, Phys. Rev. E, 74, 4, 046703 (2006)
[12] Chen, H., Volumetric formulation of the lattice Boltzmann method for fluid dynamics: basic concept, Phys. Rev. E, 58, 3955 (1998)
[13] Qian, Y. H.; d’Humieres; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479 (1992) · Zbl 1116.76419
[14] Chen, H.; Teixeira, C., H-theorem and origins of instability in thermal lattice Boltzmann models, Comput. Phys. Commun., 129, 21 (2000) · Zbl 0985.76070
[15] Chapman, S.; Cowling, T., The Mathematical Theory of Non-Uniform Gases (1990), Cambridge University Press: Cambridge University Press Cambridge
[16] Fan, H.; Zhang, R.; Chen, H., Extended volumetric scheme for lattice Boltzmann models, Phys. Rev. E, 73, 6, 066708 (2006)
[17] Ansumali, S.; Karlin, I., Kinetic boundary conditions in the lattice Boltzmann method, Phys. Rev. E, 66, 2, 026311 (2002)
[18] Sbragaglia, M.; Succi, S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Phys. Fluids, 17, 9, 093602 (2005) · Zbl 1187.76469
[19] Chen, H.; Teixeira, C.; Molvig, K., Realization of fluid boundary conditions via discrete Boltzmann dynamics, Int. J. Mod. Phys. C, 9, 8, 1281 (1998)
[20] Shan, X.; Yuan, X.-F.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413 (2006) · Zbl 1097.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.