×

zbMATH — the first resource for mathematics

Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function. (English) Zbl 1119.30006
Summary: The purpose of the present paper is to introduce several new classes of meromorphic functions defined by using a meromorphic analogue of the Choi-Saigo-Srivastava operator for the generalized hypergeometric function and to investigate various inclusion properties of these classes. Some interesting applications involving these and other classes of integral operators are also considered.

MSC:
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bajpai, S.K., A note on a class of meromorphic univalent functions, Rev. roumaine math. pures appl., 22, 295-297, (1977) · Zbl 0354.30006
[2] Choi, J.H.; Sagio, M.; Srivastava, H.M., Some inclusion properties of a certain family of integral operators, J. math. anal. appl., 276, 432-445, (2002) · Zbl 1035.30004
[3] Dziok, J.; Srivastava, H.M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. math. comput., 103, 1-13, (1999) · Zbl 0937.30010
[4] Dziok, J.; Srivastava, H.M., Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. stud. contemp. math., 5, 115-125, (2002) · Zbl 1038.30009
[5] Dziok, J.; Srivastava, H.M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral trans. spec. funct., 14, 7-18, (2003) · Zbl 1040.30003
[6] Eenigenberg, P.; Miller, S.S.; Mocanu, P.T.; Reade, M.O., On a briot – bouquet differential subordination, General inequalities, 3, 339-348, (1983)
[7] Goel, R.M.; Sohi, N.S., On a class of meromorphic functions, Glas. mat., 17, 37, 19-28, (1982) · Zbl 0504.30005
[8] Kumar, V.; Shukla, S.L., Certain integrals for classes of p-valent meromorphic functions, Bull. austral. math. soc., 25, 85-97, (1982) · Zbl 0466.30015
[9] Libera, R.J.; Robertson, M.S., Meromorphic close-to-convex functions, Michigan math. J., 8, 167-176, (1961) · Zbl 0128.07502
[10] Liu, J.-L., The Noor integral and strongly starlike functions, J. math. anal. appl., 261, 441-447, (2001) · Zbl 1040.30005
[11] Liu, J.-L.; Srivastava, H.M., A linear operator and associated families of meromorphically multivalent functions, J. math. anal. appl., 259, 566-581, (2001) · Zbl 0997.30009
[12] Liu, J.-L.; Srivastava, H.M., Certain properties of the dziok – srivastava operator, Appl. math. comput., 159, 485-493, (2004) · Zbl 1081.30021
[13] Liu, J.-L.; Srivastava, H.M., Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. comput. modell., 39, 21-34, (2004) · Zbl 1049.30008
[14] Ma, W.C.; Minda, D., An internal geometric characterization of strongly starlike functions, Ann. univ. mariae Curie-sklodowska sect. A, 45, 89-97, (1991) · Zbl 0766.30008
[15] Miller, S.S.; Mocanu, P.T., Differential subordinations and univalent functions, Michigan math. J., 28, 157-171, (1981) · Zbl 0439.30015
[16] Miller, S.S.; Mocanu, P.T., Differential subordination, (2000), Marcel Dekker, Inc. New York-Basel
[17] Noor, K.I., On new classes of integral operators, J. natur. geom., 16, 71-80, (1999) · Zbl 0942.30007
[18] Noor, K.I.; Noor, M.A., On integral operators, J. math. anal. appl., 238, 341-352, (1999) · Zbl 0934.30007
[19] Owa, S.; Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. math., 39, 1057-1077, (1987) · Zbl 0611.33007
[20] Srivastava, H.M.; Owa, S., Some characterizations and distortions theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya math. J., 106, 1-28, (1987) · Zbl 0607.30014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.