Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. (English) Zbl 1119.33009

Summary: We develop the left-definite analysis associated with the self-adjoint Jacobi operator \(A_k^{(\alpha,\beta)}\), generated from the classical second-order Jacobi differential expression \[ \ell_{\alpha,\beta,k}[y](t)= \frac{1}{w_{\alpha, \beta}(t)}((-(1-t)^{\alpha+1}(1+t)^{\beta+1} y'(t))'+k(1-t)^\alpha(1+t)^\beta y (t))\;(t\in(-1,1)), \] in the Hilbert space \(L^2_{\alpha,\beta}(-1,1):=L^2((-1, 1);w_{\alpha,\beta}(t))\), where \(w_{\alpha,\beta}(t)=(1-t)^\alpha(1+t)^\beta\), that has the Jacobi polynomials \(\{P_m^{(\alpha,\beta)}\}^\infty_{m=0}\) as eigenfunctions; here, \(\alpha,\beta>-1\) and \(k\) is a fixed, non-negative constant. More specifically, for each \(n\in\mathbb N\), we explicitly determine the unique left-definite Hilbert-Sobolev space \(W^{(\alpha,\beta)}_{n,k} (-1,1)\) and the corresponding unique left-definite self-adjoint operator \(B_{n,k}^{(\alpha, \beta)}\) in \(W^{(\alpha,\beta)}_{n,k}(-1,1)\) associated with the pair \((L^2_{\alpha,\beta}(-1,1)\), \(A_k^{(\alpha, \beta)})\). The Jacobi polynomials \(\{P_m^{(\alpha,\beta)}\}^\infty_{m=0}\) form a complete orthogonal set in each left-definite space \(W_{n,k}^{(\alpha,\beta)}(-1,1)\) and are the eigenfunctions of each \(B_{n,k}^{(\alpha,\beta)}\). Moreover, in this paper, we explicitly determine the domain of each \(B_{n,k}^{(\alpha,\beta)}\) as well as each integral power of \(A_k^{(\alpha,\beta)}\). The key to determining these spaces and operators is in finding the explicit Lagrangian symmetric form of the integral composite powers of \(\ell_{\alpha,\beta,k}[\cdot]\). In turn, the key to determining these powers is a double sequence of numbers which we introduce in this paper as the Jacobi-Stirling numbers. Some properties of these numbers, which in some ways behave like the classical Stirling numbers of the second kind, are established including a remarkable, and yet somewhat mysterious, identity involving these numbers and the eigenvalues of \(A_k^{(\alpha,\beta)}\).


33C65 Appell, Horn and Lauricella functions
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
11B73 Bell and Stirling numbers
34C14 Symmetries, invariants of ordinary differential equations
34L05 General spectral theory of ordinary differential operators
Full Text: DOI


[1] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions, Dover Publications, New York, 1972.
[2] Akhiezer, N.I.; Glazman, I.M., Theory of linear operators in Hilbert space, (1993), Dover Publications New York · Zbl 0874.47001
[3] Arvesú, J.; Littlejohn, L.L.; Marcellán, F., On the right-definite and left-definite spectral theory of the Legendre polynomials, J. comput. anal. appl., 4, 4, 363-387, (2002) · Zbl 1041.33007
[4] Bailey, P.B.; Everitt, W.N.; Zettl, A., The SLEIGN2 sturm – liouville code, ACM trans. math. software, 27, 143-192, (2001) · Zbl 1070.65576
[5] Comtet, L., Advanced combinatorics: the art of finite and infinite expansions, (1974), D. Reidel Publishing Co. Boston, MA
[6] Dunford, N.; Schwartz, J.T., Linear operators II, (1963), Interscience Publishers New York
[7] Everitt, W.N., Legendre polynomials and singular differential operators, lecture notes in mathematics, vol. 827, (1980), Springer New York, pp. 83-106 · Zbl 0453.34021
[8] Everitt, W.N.; Littlejohn, L.L.; Marić, V., On properties of the Legendre differential expression, Results math., 42, 42-68, (2002) · Zbl 1058.33008
[9] Everitt, W.N.; Littlejohn, L.L.; Wellman, R., The left-definite spectral theory for the classical Hermite differential equation, J. comput. appl. math., 121, 313-330, (2000) · Zbl 1091.47506
[10] Everitt, W.N.; Littlejohn, L.L.; Wellman, R., Legendre polynomials Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression, J. comput. appl. math., 148, 213-238, (2002) · Zbl 1014.33003
[11] W.N. Everitt, V. Marić, Some remarks on the Legendre differential expression, unpublished manuscript, Novi Sad, 1988.
[12] Everitt, W.N.; Zettl, A., Products of differential expressions without smoothness conditions, Quaestiones math., 3, 67-82, (1978) · Zbl 0397.34020
[13] W. Gawronski, L.L. Littlejohn, Legendre-Stirling Numbers, in preparation.
[14] A.M. Krall, A review of orthogonal polynomials satisfying boundary value problems, Proceedings of Second International Symposium on Orthogonal Polynomials and their Applications, Segovia, Spain, 1986, Lecture Notes in Mathematics, vol. 1329, Springer, Berlin, 1988, pp. 73-97.
[15] Littlejohn, L.L., Symmetry factors for differential equations, Amer. math. monthly, 90, 7, 462-464, (1983) · Zbl 0548.34008
[16] Littlejohn, L.L.; Race, D., Symmetric and symmetrisable ordinary differential expressions, Proc. London math. soc., 1, 334-356, (1990) · Zbl 0655.33007
[17] Littlejohn, L.L.; Wellman, R., Left-definite spectral theory with applications to differential equations, J. differential equations, 181, 2, 280-339, (2002) · Zbl 1008.47029
[18] S.M. Loveland, Spectral analysis of the Legendre equations, Ph.D. Thesis, Utah State University, Logan, UT, 1990. · Zbl 0731.54024
[19] V.P. Onyango-Otieno, The application of ordinary differential operators to the study of classical orthogonal polynomials, Ph.D. Thesis, University of Dundee, Dundee, Scotland, 1980.
[20] Naimark, M.A., Linear differential operators II, (1968), Frederick Ungar Publishing Co. New York · Zbl 0227.34020
[21] Rainville, E.D., Special functions, (1960), Chelsea Publishing Co. New York · Zbl 0050.07401
[22] Roman, S., The umbral calculus, (1984), Academic Press New York · Zbl 0536.33001
[23] Rudin, W., Real and complex analysis, (1987), McGraw-Hill Publishers New York · Zbl 0925.00005
[24] Schäfke, F.W.; Schneider, A., SS-hermitesche randeigenwertprobleme I, Math. ann., 162, 9-26, (1965) · Zbl 0151.11102
[25] G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23, Providence, RI, 1978.
[26] Titchmarsh, E.C., On eigenfunction expansions II, Quart. J. math. (Oxford), 11, 129-140, (1940) · Zbl 0024.11702
[27] Titchmarsh, E.C., Eigenfunction expansions associated with second-order differential equations, (1946), Oxford University Press Oxford, (first ed. 1946; second ed. 1962) · Zbl 0061.13505
[28] Vonhoff, R., A left-definite study of Legendre’s differential equation and the fourth-order Legendre type differential equation, Results math., 37, 155-196, (2000) · Zbl 0967.34015
[29] Weyl, H., Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklungen willkürlicher funktionen, Math. ann., 68, 220-269, (1910) · JFM 41.0343.01
[30] Zettl, A., Powers of symmetric differential expressions without smoothness assumptions, Quaestiones math., 1, 83-94, (1976) · Zbl 0343.34010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.