×

zbMATH — the first resource for mathematics

Synchronization of unified chaotic system based on passive control. (English) Zbl 1119.34332
The paper studies the following control problem: Find a control function \(u=u(x,y)\) such that two systems \(x'=f(x)\) and \(y'=f(y)+u\), where \(x,y \in \mathbb{R}^3\) are synchronized, i.e. \(\| x(t,x_0)-y(t,y_0)\| \to 0\) for any initial conditions \(x_0 = x(0,x_0)\) and \(y_0=y(0,y_0)\). The function \(f\) is chosen to correspond to the so called unified chaotic system, although chaos is not a matter of the paper.

MSC:
34H05 Control problems involving ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M., Synchronization in chaotic systems, Phys. rev. lett., 64, 821-824, (1990) · Zbl 0938.37019
[2] Colet, P.; Roy, R., Digital communication with synchronized chaotic lasers, Opt. lett., 19, 2056, (1994)
[3] Sugawara, T., Observation of synchronization in laser chaos, Phys. rev. lett., 72, 3502-3505, (1994)
[4] Chen, H.-K., Global chaos synchronization of a new chaotic system via nonlinear control, Chaos solitons fractals, 23, 1245-1251, (2005) · Zbl 1102.37302
[5] Hong, Y.; Qin, H.; Chen, G.R., Adaptive synchronization of chaotic systems via state or output feedback control, Internat. J. bifur. chaos, 11, 1149-1158, (2001) · Zbl 1090.93535
[6] Park, J.H., Synchronization of Genesio chaotic system via backstepping approach, Chaos solitons fractals, 27, 1369-1375, (2006) · Zbl 1091.93028
[7] Li, C.D.; Xiao, X.F., Impulsive synchronization of chaotic systems, Chaos, (2005), 15-023104
[8] Agiza, H.N.; Yassen, M.T., Synchronization of rossler and Chen chaotic dynamical systems using active control, Phys. lett. A, 278, 191-197, (2000) · Zbl 0972.37019
[9] Wen, Y., Passive equivalence of chaos in Lorenz system, IEEE trans. circuits syst. I, 46, 876-878, (1999)
[10] Qi, D.L.; Li, X.R.; Zhao, G.Z., Passive control of hybrid chaotic dynamical systems, J. zhejiang university (engineering science), 38, 86-89, (2004)
[11] Lu, J.H.; Chen, G.R.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Internat. J. bifur. chaos, 12, 2917-2926, (2002) · Zbl 1043.37026
[12] Lorenz, E.N., Deterministic nonperiodic flow, J. atmos. sci., 20, 130-141, (1963) · Zbl 1417.37129
[13] Chen, G.R.; Ueta, T., Yet another chaotic attractor, Internat. J. bifur. chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[14] Lu, J.H.; Chen, G.R., A new chaotic attractor coined, Internat. J. bifur. chaos, 12, 659-661, (2002) · Zbl 1063.34510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.