×

zbMATH — the first resource for mathematics

Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal. (English) Zbl 1119.35031
Summary: We establish the existence and uniqueness of entropy solutions for a fourth-order nonlinear degenerate parabolic problem for noise removal in dimension 1 \(\leq d<4\).

MSC:
35K65 Degenerate parabolic equations
35K35 Initial-boundary value problems for higher-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M., Minimizing total variation flow, C. R. acad. sci. Paris Sér. I math., 331, 11, 867-872, (2000) · Zbl 0973.35113
[2] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M., The Dirichlet problem for the total variation flow, J. funct. anal., 180, 2, 347-403, (2001) · Zbl 0973.35109
[3] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J.M., Minimizing total variation flow, Differential integral equations, 14, 3, 321-360, (2001) · Zbl 1020.35037
[4] Andreu, F.; Caselles, V.; Díaz, J.I.; Mazón, J.M., Some qualitative properties for the total variation flow, J. funct. anal., 188, 2, 516-547, (2002) · Zbl 1042.35018
[5] Andreu, F.; Mazón, J.M.; Moll, J.S., The total variation flow with nonlinear boundary conditions, Asymptot. anal., 43, 1-2, 9-46, (2005) · Zbl 1082.35084
[6] Andreu, F.; Mazón, J.M.; Moll, J.S.; Caselles, V., The minimizing total variation flow with measure initial conditions, Commun. contemp. math., 6, 3, 431-494, (2004) · Zbl 1082.35090
[7] Carriero, M.; Leaci, A.; Tomarelli, F., Second order variational problems with free discontinuity and free gradient discontinuity, (), 135-186 · Zbl 1115.49002
[8] Chambolle, A.; Lions, P.L., Image recovery via total variation minimization and related problems, Numer. math., 76, 167-188, (1997) · Zbl 0874.68299
[9] Chan, T.F.; Esedog¯lu, S., Aspects of total variation regularized \(L^1\) function approximation, SIAM J. appl. math., 65, 5, 1817-1837, (2005), (electronic) · Zbl 1096.94004
[10] Demengel, F., Fonctions a Hessian borńe, Ann. inst. Fourier, 34, 155-190, (1984) · Zbl 0525.46020
[11] Demengel, F., Compactness theorem for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. rational mech. anal., 105, 123-161, (1989) · Zbl 0669.73030
[12] J.I. Díaz, E. Schiavi, On a fourth order problem arising in image processing (in preparation)
[13] Fonseca, I.; Leoni, G.; Paroni, R., On Hessian matrices in the space \(\mathit{BH}\), Commun. contemp. math., 7, 4, 401-420, (2005) · Zbl 1102.49021
[14] Fonseca, I.; Leoni, G.; Malý, J.; Paroni, R., A note on meyers’ theorem in \(W^{k, 1}\), Trans. amer. math. soc., 354, 9, 3723-3741, (2002), (electronic) · Zbl 1006.49006
[15] Greer, J.B.; Bertozzi, A.L., Traveling wave solutions of fourth order PDEs for image processing, SIAM J. math. anal., 36, 1, 38-68, (2004), (electronic) · Zbl 1082.35080
[16] Hinterberger, W.; Scherzer, O., Variational methods on the space of functions of bounded Hessian for convexification and denoising, Computing, 76, 1, 109-133, (2006) · Zbl 1098.49022
[17] Lysaker, M.; Lundervold, A.; Tai, X.C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE trans. image process., 12, 12, 1579-1590, (2003) · Zbl 1286.94020
[18] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028
[19] Savaré, G.; Tomarelli, F., Superposition and chain rule for bounded Hessian functions, Adv. math., 140, 2, 237-281, (1998) · Zbl 0919.49001
[20] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse problems, 19, 165-187, (2003)
[21] Wu, Z.; Zhao, J.; Yin, J.; Li, H., Nonlinear diffusion equations, (2001), World Scientific
[22] Xu, M.; Zhou, S.L., Existence and uniqueness of weak solutions for a generalized thin film equation, Nonlinear anal., 60, 4, 755-774, (2005) · Zbl 1073.35102
[23] Yin, J.X.; Wang, C.P., Young measure solutions of a class of forward – backward diffusion equations, J. math. anal. appl., 279, 2, 659-683, (2003) · Zbl 1029.35143
[24] You, Y.L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE trans. image process., 9, 10, 1723-1730, (2000) · Zbl 0962.94011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.