zbMATH — the first resource for mathematics

Atomic surfaces, tilings and coincidences. II: Reducible case. (English) Zbl 1119.52013
Summary: The atomic surfaces of unimodular Pisot substitutions of irreducible type have been studied by many authors. In this article, we study the atomic surfaces of Pisot substitutions of reducible type. As an analogue of the irreducible case, we define the stepped-surface and the dual substitution over it. Using these notions, we give a simple proof to the fact that atomic surfaces form a self-similar tiling system. We show that the stepped-surface possesses the quasi-periodic property, which implies that a non-periodic covering by the atomic surfaces covers the space exactly \(k\)-times. The atomic surfaces are originally designed by Rauzy to study the spectrum of the substitution dynamical system via a periodic tiling. However, we show that, since the stepped-surface is complicated in the reducible case, it is not clear whether the atomic surfaces can tile the space periodically or not. It seems that the geometry of the atomic surfaces can not applied directly to the spectral problem.
[For Part I of this paper see S. Ito and H. Rao, “Atomic surfaces, tilings and coincidences. I: Irreducible case”, Isr. J. Math. 153, 129–155 (2006; Zbl 1143.37013); Part III: \(\beta\)-tiling and super-coincidence” by H. Ei, S. Ito and H. Rao is in prepration.]

52C23 Quasicrystals and aperiodic tilings in discrete geometry
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
28A80 Fractals
11B85 Automata sequences
Zbl 1143.37013
Full Text: DOI Numdam Numdam EuDML
[1] Akiyama, S., Number theory and its applications, 2, Self-affine tiling and Pisot numeration system, 7-17, (1999), Kluwer Acad. Plubl., Dordrecht · Zbl 0999.11065
[2] Akiyama, S., On the boundary of self-affine tilings generated by Pisot numbers, J. Math. Soc. Japan, 54, 2, 283-308, (2002) · Zbl 1032.11033
[3] Akiyama, S.; Rao, H.; Steiner, W., A certain finiteness property of Pisot number systems, J. Number Theory, 107, 135-160, (2004) · Zbl 1052.11055
[4] Arnoux, P.; Berthé, V.; Ito, S., Discrete planes \(, {\mathbb{Z}}^2\)-actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble), 52, 2, 305-349, (2002) · Zbl 1017.11006
[5] Arnoux, P.; Ito, S., Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc., 8, 181-207, (2001) · Zbl 1007.37001
[6] Baker, V.; Barge, M.; Kwapisz, J., Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to \(β \)-shifts, (2005)
[7] Bandt, C., Self-similar sets. V. integer matrices and fractal tilings of \({\mathbb{R}}^ n,\) Proc. Amer. Math. Soc., 112, 2, 549-562, (1991) · Zbl 0743.58027
[8] Barge, M.; Diamond, B., Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130, 4, 619-626, (2002) · Zbl 1028.37008
[9] Barge, M.; Kwapisz, J., Geometric theory of unimodular Pisot substitutions, (2004) · Zbl 1152.37011
[10] Bernat, J.; Berthé, V.; Rao, H., On the super-coincidence condition, (2006)
[11] Berthé, V.; Siegel, A., Tilings associated with beta-numeration and substitutions, Electronic J. Comb. Number Theory, 5, 3, #A02 pp., (2005) · Zbl 1139.37008
[12] Dekking, F. M., The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41, 3, 221-239, (197778) · Zbl 0348.54034
[13] Durand, F.; Thomas, A., Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., 65, 2, 153-169, (1989) · Zbl 0679.10010
[14] Ei, H.; Ito, S., Tilings from some non-irreducible, Pisot substitutions, Discrete Mathematics and Theoretical Computer Science, 7, 1, 81-122, (2005) · Zbl 1153.37323
[15] Ei, H.; Ito, S.; Rao, H., Atomic surfaces, tilings and coincidences III:\( β \)-tiling and super-coincidence
[16] Falconer, K., Techniques in fractal geometry, (1997), John Wiley & Sons Ltd., Chichester · Zbl 0869.28003
[17] Fogg, N., Substitutions in dynamics, arithmetics and combinatorics, (2002), Springer-Verlag, Berlin · Zbl 1014.11015
[18] Frougny, C.; Solomyak, B., Finite beta-expansions, Ergodic Theory & Dynam. Sys., 12, 713-723, (1992) · Zbl 0814.68065
[19] Host, B.
[20] Ito, S.; Rao, H., Atomic surfaces, tilings and coincidences I. Irreducible case · Zbl 1143.37013
[21] Ito, S.; Rao, H., Purely periodic \(β \)-expansions with Pisot unit base, Proc. Amer. Math. Soc., 133, 953-964, (2005) · Zbl 1099.11062
[22] Ito, S.; Sano, Y., On periodic \(β \)-expansions of Pisot numbers and Rauzy fractals, Osaka J. Math., 38, 349-368, (2001) · Zbl 0991.11040
[23] Kenyon, R., Self-replicating tilings, 135, (1992), P. Walters, ed. · Zbl 0770.52013
[24] Lagarias, J.; Wang, Y., Self-affine tiles in \({\mathbb{R}}^ n,\) Adv. Math., 121, 1, 21-49, (1996) · Zbl 0893.52013
[25] Lagarias, J.; Wang, Y., Substitution Delone sets, Discrete Comput. Geom., 29, 2, 175-209, (2003) · Zbl 1037.52017
[26] Praggastis, B., Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc., 351, 8, 3315-3349, (1999) · Zbl 0984.11008
[27] Queffelec, M., Substitution Dynamical Systems - Spectral Analysis, (1987), Springer-Verlag, Berlin · Zbl 0642.28013
[28] Rauzy, G., Nombres algébriques et substitutions, Bull. Soc. Math. France, 110, 147-178, (1982) · Zbl 0522.10032
[29] Senechal, M., Quasicrystals and Geometry, (1995), Cambridge University Press · Zbl 0828.52007
[30] Siegel, A., Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, (2000)
[31] Siegel, A., Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble), 54, 2, 341-381, (2004) · Zbl 1083.37009
[32] Sirvent, V.; Wang, Y., Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., 206, 2, 465-485, (2002) · Zbl 1048.37015
[33] Thurston, W. P., Groups, tilings, and finite state automata, (1989), Providence, RI
[34] Thuswaldner, J., Unimodular Pisot substitutions and their associated tiles · Zbl 1161.37016
[35] Vince, A., Digit tiling of Euclidean space, Center de Recherches Mathematiques CRM Monograph Series, 13, 329-370, (2000) · Zbl 0972.52012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.