Solving nonlinear partial differential equations using the modified variational iteration Padé technique. (English) Zbl 1119.65095

Summary: The modified variational iteration method (MVIM) is reintroduced with the enhancement of Padé approximants to lengthen the interval of convergence of VIM or MVIM when used alone in solving nonlinear problems. Korteweg-de Vries (KdV), modified KdV, Burger’s and Lax’s equations are used as examples to illustrate the effectiveness and convenience of the proposed technique.


65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)


ATFM; Mathematica
Full Text: DOI


[1] Abassy, T.A.; El-Tawil, M.; Kamel, H., The solution of KdV and mkdv equations using Adomian Padé approximation, Internat. J. nonlinear sci. numer. simulation, 5, 4, 327-339, (2004)
[2] T.A. Abassy, M. El-Tawil, H. Kamel, The solution of Burgers’ and good Boussinesq equations using ADM—Padé technique, Chaos, Solitons Fractals, in press.
[3] T.A. Abassy, M. El-Tawil, H. El Zoheiry, Toward a modified variational iteration method, J. Comput. Appl. Math., accepted for publication. · Zbl 1119.65096
[4] Abdou, M.A.; Soliman, A.A., Variational iteration method for solving burger’s and coupled Burger’s equations, J. comput. appl. math., 181, 2, 245-251, (2005) · Zbl 1072.65127
[5] Adomian, G., Solving frontier problem of physics: the decomposition method, (1994), Kluwer Academic Publishers Boston, MA · Zbl 0802.65122
[6] Baker, G.A., Essentials of Padé approximants, (1975), Academic Press New York · Zbl 0315.41014
[7] P.G. Drazin, R.S. Jonson, Soliton: An Introduction, Cambridge, New York, 1993.
[8] El-Tawil, M.A.; Elbahnasawi, A.A.; Abdelnaby, A., Solving Riccati differential equations using Adomian decomposition method, J. appl. math. comput., 157, 2, 503-514, (2004) · Zbl 1054.65071
[9] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. methods appl. mech. eng., 167, 1-2, 57-68, (1998) · Zbl 0942.76077
[10] He, J.H., Variational iteration method—a kind of non-linear analytical technique: some examples, Internat. J. non-linear mech., 34, 4, 699-708, (1999) · Zbl 1342.34005
[11] He, J.H., Homotopy perturbation technique, Comput. methods appl. mech. eng., 178, 3-4, 257-262, (1999) · Zbl 0956.70017
[12] He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. non-linear mech., 35, 1, 37-43, (2000) · Zbl 1068.74618
[13] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Internat. J. nonlinear sci. numer. simulation, 6, 2, 207-208, (2005)
[14] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons fractals, 26, 3, 695-700, (2005) · Zbl 1072.35502
[15] He, J.H.; Wu, XH., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, solitons fractals, 29, 1, 108-113, (2006) · Zbl 1147.35338
[16] J.H. He, Non-perturbative methods for strongly nonlinear problems, dissertation. de-Verlag im Internet GmbH, Berlin, 2006.
[17] He, J.H., Some asymptotic methods for strongly nonlinear equations, Internat. J. modern phys. B, 20, 10, 1141-1199, (2006) · Zbl 1102.34039
[18] Parkes, E.J.; Duffy, B.R., An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. phys. comm., 98, 288-300, (1996) · Zbl 0948.76595
[19] Su, C.H.; Gardner, C.S., Derivation of the korteweg – de Vries and Burgers equation, J. math. phys., 10, 536-539, (1969) · Zbl 0283.35020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.