×

zbMATH — the first resource for mathematics

He’s parameter-expanding methods for strongly nonlinear oscillators. (English) Zbl 1120.65084
Summary: Ji-Huan He’s work [Int. J. Nonlinear Sci. Numer. Simul. 2, No. 3, 257–264 (2001; Zbl 1072.34508); Int. J. Non-Linear Mech. 37, No. 2, 309–314 (2002; Zbl 1116.34320)] on asymptotic techniques is briefly reviewed, and his parameter-expanding methods including the modified Lindstedt-Poincare method and the bookkeeping parameter method are discussed in detail. Some remarkable virtues of the methods are exploited, and their applications are illustrated.

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cai, X.C.; Wu, W.Y.; Li, M.S., Approximate period solution for a kind of nonlinear oscillator by He’s perturbation method, Internat. J. nonlinear sci. numer. simulation, 7, 1, 109-112, (2006)
[2] D’Acunto, M., Determination of limit cycles for a modified van der Pol oscillator, Mech. res. commun., 33, 93-98, (2006) · Zbl 1192.70026
[3] El Naschie, M.S., The Feynman path integral and e-infinity from the two-slit gedanken experiment, Internat. J. nonlinear sci. numer. simulation, 6, 4, 335-342, (2005)
[4] El Naschie, M.S., Einstein in a complex time—some very personal thoughts about E-infinity theory and modern physics, Internat. J. nonlinear sci. numer. simulation, 6, 3, 331-333, (2005)
[5] El Naschie, M.S., On a fuzzy kahler-like manifold which is consistent with the two slit experiment, Internat. J. nonlinear sci. numer. simulation, 6, 2, 95-98, (2005)
[6] El Naschie, M.S., The unreasonable effectiveness of the electron-volt units system in high energy physics and the role played by (alpha)over-bar(o)=137, Internat. J. nonlinear sci. numer. simulation, 7, 2, 119-128, (2006)
[7] El Naschie, M.S., The brain and E-infinity, Internat. J. nonlinear sci. numer. simulation, 7, 2, 129-132, (2006)
[8] El Naschie, M.S., The missing particles of the standard model via a unified particle-field framework, Internat. J. nonlinear sci. numer. simulation, 7, 1, 101-104, (2006)
[9] He, J.H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Internat. J. turbo jet-engines, 14, 23-28, (1997)
[10] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. meth. appl. mech. eng., 167, 57-68, (1998) · Zbl 0942.76077
[11] He, J.H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. meth. appl. mech. eng., 167, 69-73, (1998) · Zbl 0932.65143
[12] He, J.H., Variational iteration method—a kind of non-linear analytical technique: some examples, Internat. J. non-linear mech., 34, 699-708, (1999) · Zbl 1342.34005
[13] He, J.H., Homotopy perturbation technique, Comput. meth. appl. mech. eng., 178, 257-262, (1999) · Zbl 0956.70017
[14] He, J.H., Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parametrized perturbation technique, Commun. nonlinear sci. numer. simulation, 4, 1, 81-83, (1999) · Zbl 0932.34058
[15] He, J.H., Modified straightforward expansion, Meccanica, 34, 4, 287-289, (1999) · Zbl 1002.70019
[16] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 115-123, (2000) · Zbl 1027.34009
[17] He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. non-linear mech., 35, 37-43, (2000) · Zbl 1068.74618
[18] He, J.H., A modified perturbation technique depending upon an artificial parameter, Meccanica, 35, 4, 299-311, (2000) · Zbl 0986.70016
[19] He, J.H., A new perturbation technique which is also valid for large parameters, J. sound vibration, 229, 5, 1257-1263, (2000) · Zbl 1235.70139
[20] He, J.H., Modified lindsted-poincare methods for some strongly nonlinear oscillations, part III: double series expansion, Internat. J. nonlinear sci. numer. simulation, 2, 4, 317-320, (2001) · Zbl 1072.34507
[21] He, J.H., Bookkeeping parameter in perturbation methods, Internat. J. nonlinear sci. numer. simulation, 2, 257-264, (2001) · Zbl 1072.34508
[22] He, J.H., Iteration perturbation method for strongly nonlinear oscillations, J. vibration control., 7, 631-642, (2001) · Zbl 1015.70019
[23] He, J.H., Preliminary report on the energy balance for nonlinear oscillations, Mech. res. commun., 29, 107-111, (2002) · Zbl 1048.70011
[24] He, J.H., Modified lindstedt – poincare methods for some strongly non-linear oscillations, part I: expansion of a constant, Internat. J. non-linear mech., 37, 2, 309-314, (2002) · Zbl 1116.34320
[25] He, J.H., Modified lindstedt – poincare methods for some strongly non-linear oscillations, part II: a new transformation, Internat. J. non-linear mech., 37, 2, 315-320, (2002) · Zbl 1116.34321
[26] He, J.H., A simple perturbation approach to Blasius equation, Appl. math. comput., 140, 217-222, (2003) · Zbl 1028.65085
[27] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. math. comput., 135, 73-79, (2003) · Zbl 1030.34013
[28] He, J.H., Determination of limit cycles for strongly nonlinear oscillators, Phys. rev. lett., 90, 174301, (2003)
[29] He, J.H., A new iteration method for solving algebraic equations, Appl. math. comput., 135, 1, 81-84, (2003) · Zbl 1023.65039
[30] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, solitons & fractals, 19, 847-851, (2004) · Zbl 1135.35303
[31] He, J.H.; Wan, Y.Q.; Guo, Q., An iteration formulation for normalized diode characteristics, Internat. J. circuit theory appl., 32, 629-632, (2004) · Zbl 1169.94352
[32] He, J.H., Asymptology by homotopy perturbation method, Appl. math. comput., 156, 591-596, (2004) · Zbl 1061.65040
[33] He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. math. comput., 151, 287-292, (2004) · Zbl 1039.65052
[34] He, J.H., Variational approach to (2+1)-dimensional dispersive long water equations, Phys. lett. A, 335, 182-184, (2005) · Zbl 1123.37319
[35] He, J.H., A generalized variational principle in micromorphic thermoelasticity, Mech. res. commun., 32, 93-98, (2005) · Zbl 1091.74012
[36] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons & fractals, 26, 695-700, (2005) · Zbl 1072.35502
[37] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Internat. J. nonlinear sci. numer. simulation, 6, 207-208, (2005)
[38] He, J.H., Limit cycle and bifurcation of nonlinear problems, Chaos, solitons & fractals, 26, 827-833, (2005) · Zbl 1093.34520
[39] He, J.H., Time and beyond, Internat. J. nonlinear sci. numer. simulation, 6, 4, 343-346, (2005)
[40] He, J.H., In search of 9 hidden particles, Internat. J. nonlinear sci. numer. simulation, 6, 2, 93-94, (2005)
[41] He, J.H., Some asymptotic methods for strongly nonlinear equations, Internat. J. mod. phys. B, 20, 10, 1141-1199, (2006) · Zbl 1102.34039
[42] J.H. He, Non-perturbative Methods for Strongly Nonlinear Problems, Dissertation.de-Verlag im Internet GmbH, Berlin, 2006.
[43] He, J.H., Application of E-infinity to biology, Chaos, solitons & fractals, 28, 2, 285-289, (2006) · Zbl 1079.92002
[44] He, J.H., Application of E-infinity theory to turbulence, Chaos, solitons & fractals, 30, 2, 506-511, (2006)
[45] He, J.-H.; Huang, Z., A novel model for allometric scaling laws for different organs, Chaos, solitons & fractals, 27, 4, 1108-1114, (2006) · Zbl 1079.92020
[46] He, J.H.; Wan, Y.Q.; Yu, J.Y., Application of vibration technology to polymer electrospinning, Internat. J. nonlinear sci. numer. simulation, 5, 3, 253-262, (2004)
[47] He, J.H.; Wu, Y.; Zuo, W.W., Critical length of straight jet in electrospinning, Polymer, 46, 12637-12640, (2005)
[48] Liu, H.M., Approximate period of nonlinear oscillators with discontinuities by modified lindstedt – poincare method, Chaos, solitons & fractals, 23, 2, 577-579, (2005) · Zbl 1078.34509
[49] Mickens, R.E., Iteration method solutions for conservative and limit-cycle \(x^{1 / 3}\) force oscillators, J. sound vibration, 292, 964-968, (2006) · Zbl 1243.34051
[50] Mickens, R.E., Investigation of the properties of the period for the nonlinear oscillator \(x'' +(1 + x^{\prime 2}) x = 0\), J. sound vibration, 292, 1031-1035, (2006) · Zbl 1243.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.