zbMATH — the first resource for mathematics

Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. (English) Zbl 1120.74734
Summary: This paper describes a procedure for the solution of problems involving tensile cracking using the so-called smeared crack approach, that is, standard finite elements with continuous displacement fields and a standard local constitutive model with strain-softening. An isotropic Rankine damage model is considered. The softening modulus is adjusted according to the material fracture energy and the element size. The resulting continuum and discrete mechanical problems are analyzed and the question of predicting correctly the direction of crack propagation is deemed as the main difficulty to be overcome in the discrete problem. It is proposed to use a crack tracking technique to attain the desired stability and convergence properties of the corresponding formulation. Numerical examples show that the resulting procedure is well-posed, stable and remarkably robust; the results obtained do not seem to suffer from spurious mesh-size or mesh-bias dependence.

74R05 Brittle damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Galilei, G., Discorsi e dimonstrazioni matematiche intorno a due nuove scienze (two new sciences, English translation), (1638), The Macmillan Company (1933) New York
[2] Griffith, A.A., The phenomenon of rupture and flow of solids, Phil. trans. roy. soc. (London), 22, 163-198, (1921)
[3] Barenblatt, G.I., On equilibrium cracks formed during brittle fracture, Prikl. mat. mech., 23, 3, 622-636, (1959) · Zbl 0095.39202
[4] Dugdale, D.S., Yielding of steel seets containing slits, J. mech. phys. solids, 8, 100-104, (1960)
[5] Ngo, D.; Scordelis, A.C., Finite element analysis of reinforced concrete beams, Aci j., 64, 14, 152-163, (1967)
[6] Tong, P.; Pian, T.H.H., On the convergence of the finite element method for problems with singularily, Int. J. solids struct., 9, 313-321, (1973)
[7] Owen, D.R.J.; Fawkes, A.J., Engineering fracture mechanics, (1983), Pineridge Press Swansea
[8] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Comp. methods appl. mech. engrg., 45, 5, 601-620, (1999) · Zbl 0943.74061
[9] Möes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[10] Sukumar, N.; Möes, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Int. J. numer. methods engrg., 48, 1549-1570, (2000) · Zbl 0963.74067
[11] Karihaloo, B.L.; Xiao, Q.Z., Modelling of stationary and growing cracks in FE framework without remeshing: a state-or-the-art review, Comput. struct., 81, 119-129, (2003)
[12] Rashid, Y., Analysis of prestrssed concrete pressure vessels, Nucl. engrg. des., 7, 334-344, (1968)
[13] Hillerborg, A.; Modeer, M.; Peterson, P.E., Analysis of crack formation and crack growth in concrete by means of F. M. and finite elements, Cement concrete res., 6, 773-782, (1976)
[14] Bazant, Z.P.; Oh, B.H., Crack band theory for fracture of concrete, Mater. struct., 16, 155-177, (1983)
[15] Zienkiewicz, O.C.; Pastor, M.; Huang, M., Softening, localization and adaptive remeshing: capture of discontinuous solutions, Comp. mech., 17, 98-106, (1995) · Zbl 0842.73068
[16] Zienkiewicz, O.C.; Huang, M.; Pastor, M., Localization problems in plasticity using finite elements with adaptive remeshing, Int. J. numer. methods geomech., 19, 127-148, (1995) · Zbl 0819.73069
[17] Aifantis, E.C., On the microstructural origin of certain inelastic models, Trans ASME J. engrg. mater. technol., 106, 326-330, (1984)
[18] de Borst, R., Simulation of strain localization: a reppraisal of the Cosserat continuum, Engrg. comput., 8, 317-322, (1991)
[19] Schereyer, H.; Chen, Z., One dimensional softening with localization, J. appl. mech., ASME, 53, 791-797, (1986)
[20] Bazant, Z.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. engrg. mech., ASCE, 128, 1119-1149, (2002)
[21] Vardoulakis, I.; Aifantis, E.C., A gradient flow theory of plasticity for granular materials, Acta mech., 87, 197-217, (1991) · Zbl 0735.73026
[22] de Borst, R.; Mulhaus, H.B., Gradient-dependent plasticity: formulation and algorithm aspect, Int. J. numer. methods engrg., 35, 521-539, (1992) · Zbl 0768.73019
[23] Jirásek, M., Nonlocal models for damage and fracture: comparison of approaches, Int. J. solids struct., 35, 4133-4145, (1998) · Zbl 0930.74054
[24] de Borst, R., Some recent issues in computational failure mechanics, Int. J. numer. methods engrg., 52, 63-95, (2001)
[25] A. Simone, Continuous-discontinuous modelling of failure. Ph.D. Thesis, TU Delft, The Netherlands, 2003.
[26] Needelman, A., Material rate dependence and mesh sensitivity in localization problems, Comput. methods appl. mech. engrg., 67, 68-75, (1987)
[27] Simo, J.C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. mech., 12, 49-61, (1993) · Zbl 0783.73024
[28] Oliver, J., Continuum modeling of strong discontinuities in solid mechanics using damage models, Comput. mech., 17, 277-296, (1995)
[29] Oliver, J.; Cervera, M.; Manzoli, O., Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int. J. plast., 15, 319-351, (1999) · Zbl 1057.74512
[30] Oliver, J.; Huespe, A.E.; Samaniego, E.; Chaves, W.V., Continuum approach to the numerical simulation of material failure in concrete, Int. J. numer. anal. methods geomech., 28, 609-632, (2004) · Zbl 1112.74493
[31] Oliver, J.; Huespe, A.E., Continuum approach to material failure in strong discontinuity settings, Comput. methods appl. mech. engrg., 193, 3195-3220, (2004) · Zbl 1060.74507
[32] Mosler, J.; Meschke, G., Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias, Comput. methods appl. mech. engrg., 193, 3351-3375, (2004) · Zbl 1060.74606
[33] C. Feist, W. Kerber, H. Lehar, G. Hofstetter, A comparative study of numerical models for concrete cracking, in: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Periaux, D. Knörzer (Eds.), Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyväskylä, Finland, 2004.
[34] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity, Int. J. numer. anal. methods geomech., 28, 373-393, (2003) · Zbl 1071.74050
[35] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Shear band localization via local J_{2} continuum damage mechanics, Comput. methods appl. mech. engrg., 193, 849-880, (2003) · Zbl 1106.74312
[36] Lemaitre, J.; Chaboche, J.L., Aspects phénoménologiques de la rupture par endommagement, J. Méc. appl., 2, 317-365, (1978)
[37] Cervera, M.; Oliver, J.; Faria, R., Seismic evaluation of concrete dams via continuum damage models, Earth. engrg. struct. dyn., 24, 1225-1245, (1995)
[38] Faria, R.; Oliver, J.; Cervera, M., A strain-based plastic viscous-damage model for massive concrete structures, Int. J. solids struct., 35, 14, 1533-1558, (1998) · Zbl 0920.73326
[39] Simó, J.C.; Ju, J.W., Strain- and stress-based continuum damage models - I formulation, Int. J. solids struct., 23, 821-840, (1987) · Zbl 0634.73106
[40] Ju, J.W., On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects, Int. J. solids struct., 7, 803-833, (1989) · Zbl 0715.73055
[41] Oliver, J., On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Int. J. solids struct., 37, 7207-7229, (2000) · Zbl 0994.74004
[42] Rots, J.G.; Nauta, P.; Kusters, G.M.A.; Blaauwendraad, J., Smeared crack approach and fracture localization in concrete, Heron, 30, 1, (1985)
[43] Rots, J.G.; Blaauwendraad, J., Crack models for concrete: discrete or smeared? fixed, multi-directional or rotating?, Heron, 34, 1, (1989)
[44] Oliver, J., A consistent characteristic length for smeared cracking models, Int. J. numer. methods engrg., 28, 461-474, (1989) · Zbl 0676.73066
[45] Cervera, M.; Oliver, J.; Manzoli, O., A rate-dependent isotropic damage model for the seismic evaluation of concrete dams, Earth. engrg. struct. dyn., 25, 987-1010, (1996)
[46] R. Faria, J. Oliver, M. Cervera, On isotropic scalar damage models for numerical analysis of concrete structures. Research Publication, CIMNE, PI-170, 1999.
[47] Faria, R.; Oliver, J.; Cervera, M., Modeling material failure in concrete structures under cyclic actions, J. struct. engrg., ASCE, 130, 1997-2005, (2004)
[48] Finchant, S.; La Borderie, C.; Pijaudier-Cabot, G., Isotropic and anisotropic descriptions of damage in concrete structures, Mech. cohes.-frict. mater., 4, 339-359, (1999)
[49] Kachanov, L.M., Time of rupture process under creep conditions, Izvestia akademii nauk, old tech nauk, 8, 26-31, (1958)
[50] P. Dumstorff, G. Meschke, Investigation of crack growth criteria in the context of the extended finite element method, in: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Periaux, D. Knörzer (Eds.), Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, Jyväskylä, Finland, 2004. · Zbl 1159.74038
[51] P. Grassl, M. Jirásek, On mesh bias of local damage models for concrete, in: V.C. Li et al. (Eds.), Fracture Mechanics of Concrete Structures, Proceedings of 5th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-5, Vail, Colorado, USA, 2004.
[52] M. Cervera, C. Agelet de Saracibar, M. Chiumenti, COMET: COupled MEchanical and Thermal analysis, Data Input Manual, Version 5.0, Technical report IT-308, 2002. Available from: <www.cimne.upc.es>. · Zbl 1083.74584
[53] GiD: the personal pre and post-processor, 2002. Available from: <www.gid.cimne.upc.es>.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.