×

zbMATH — the first resource for mathematics

Shapes of liquid drops obtained using symbolic computation. (English) Zbl 1120.76070
Summary: The first aim is to show how two free boundary problems arising from fluid mechanics can be solved with a domain perturbation method. The second aim is to analyse the range of validity of series solutions. The analysis will aim at identifying the location and the nature of singularities characterizing these series. After expansion, the equations obtained are linear, but at each stage the length of the expressions grows exponentially. Herein we implement techniques for automatic generation of hierarchical expression sequences, and we present several tools for reducing the combinatorial blow-up of expressions arising in these two problems.

MSC:
76U05 General theory of rotating fluids
76T10 Liquid-gas two-phase flows, bubbly flows
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Appell, P.F., Traité de mécanique rationnelle, vol. 4, (1932), Gauthier-Villars Paris, (Chapter 9)
[2] Aziz, A.; Benzies, J.Y., Application of perturbation techniques to heat transfer problems with variable thermal properties, Int. J. heat mass transfer, 19, 271-276, (1976)
[3] Bender, C.; Orszag, S., Advanced mathematical methods for scientist and engineers, (1978), McGraw-Hill New York
[4] Brancher, J.P.; Séro-Guillaume, O., Etude de la déformation d’un liquide magnétique, Arch. ration. mech., 90, 57-85, (1983) · Zbl 0577.76105
[5] Brown, R.; Scriven, L., The shape and stability of rotating liquid drops, Proc. R. soc. London A, 371, 331-357, (1980) · Zbl 0435.76073
[6] Chandrasekhar, S., The stability of a rotating liquid drop, Proc. R. soc. London A, 286, 1-26, (1965) · Zbl 0137.23004
[7] Corless, R.M.; Jeffrey, D.J., Solution of a hydrodynamic lubrication problem with Maple, J. symbolic comput., 9, 503-513, (1990) · Zbl 0693.76044
[8] Corless, R.M.; Jeffrey, D.J.; Monogan, M.B.; Pratibha, Two perturbation calculations in fluid mechanics using large-expression management, J. symbolic comput., 23, 427-443, (1997) · Zbl 0872.68074
[9] Courant, R.; Hilbert, D., Methods of mathematical physics, vol. I, (1953), Wiley Interscience Publication · Zbl 0729.00007
[10] Dienes, P., Taylor series, (1957), Dover New York · Zbl 0078.05901
[11] Domb, C.; Sykes, M.F., On the susceptibility of a ferromagnetic above the Curie point, Proc R. soc. London A, 240, 214-228, (1957) · Zbl 0078.23309
[12] Evans, R.D., The atomic nucleus, (1955), McGraw-Hill New York · Zbl 0068.40402
[13] Garabedian, P.R., Shiffer, M., 1952-1953. Convexity of domain functionals. J. Anal. Math. 2, 281-368
[14] Graves, L.M.; Hilderbrandt, T.H., Implicit functions and their differentials in general analysis, Trans. amer. math. soc., 43, 127-153, (1923) · JFM 53.0234.02
[15] Hadamard, J., Mémoire sur LES problèmes d’analyse relatif à l’équilibre des plaques élastiques encastrées, () · JFM 39.1022.01
[16] Joseph, D.D.; Fosdick, R.L., The free surface on a liquid between cylinders rotating at different speeds, Arch. ration. mech. anal., 49, 321-350, (1972) · Zbl 0265.76113
[17] Lefebvre, M.A., Atomisation and sprays, (1989), Hemisphere Publishing Corporation
[18] Mack, L.R.; Bishop, E.H., Natural convection between horizontal concentric cylinders for low Rayleigh numbers, Quart. J. mech. appl. math., 21, 223-241, (1988) · Zbl 0167.55303
[19] Meiron, D.I., On the stability of gas bubbles rising in an inviscid fluid, J. fluid mech., 198, 101-114, (1989) · Zbl 0667.76143
[20] Miksis, M.; Vanden-Broek, J.M.; Keller, J., Axisymmetric bubble or drop in a uniform flow, J. fluid mech., 108, 89-100, (1981) · Zbl 0486.76107
[21] Moser, J., A new technique for the constructions of nonlinear differential equations, Proc. natl. acad. sci., 47, 1824-1831, (1961) · Zbl 0104.30503
[22] Nash, J., The imbedding problem for Riemannian manifolds, Ann. math., 63, 20-63, (1956) · Zbl 0070.38603
[23] Ono, S.; Kondo, O., Molecular theory of surface tension in liquids, (1960), Springer Verlag · Zbl 0107.23501
[24] Sattinger, D., On the free surface of a viscous fluid motion, Proc. R. soc. London A, 349, 183-204, (1976) · Zbl 0329.76033
[25] Schwartz, L.W.; Whitney, A.K., A semi-analytic solution for nonlinear standing waves in deep water, J. fluid mech., 107, 147-171, (1981) · Zbl 0462.76024
[26] Séro-Guillaume, O.; Er-Riani, M., Domain perturbation method and the shape of a bubble in a uniform flow of an inviscid liquid, Eur. J. mech. B/fluids, 18, 991-1003, (1999) · Zbl 0955.76077
[27] Swiatecki, W.J., 1974. The rotating, charged or gravitating liquid drop and problems in nuclear physics and astronomy. In: Collins et al. (Eds.), Proc. Int. Coll. On Drops and Bubbles
[28] Van Dyke, M., Analysis and improvement of perturbation series, Quart. J. mech. appl. math., 27, 423-450, (1974) · Zbl 0295.65066
[29] Van Dyke, M., Computer extension of perturbation series in fluid mechanics, SIAM J. appl. math., 28, 720-734, (1975)
[30] Vonnegut, B., Rotating bubble method for the determination of surface and interfacial tension, Rev. sci. instrum., 13, 6-9, (1942)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.