Cherepanov, E. A. Free semigroup in the group of automorphisms of the free Burnside group. (English) Zbl 1121.20028 Commun. Algebra 33, No. 2, 539-547 (2005). Summary: Let \(\mathfrak B(m,n)\) be a free Burnside group of a sufficiently large exponent \(n\) with a basis of cardinality \(m\), \(m\geq 2\). We prove the existence of a free semigroup of rank 2 in \(\operatorname{Aut}\,\mathfrak B(m,n)\). Cited in 6 Documents MSC: 20F28 Automorphism groups of groups 20F50 Periodic groups; locally finite groups 20M05 Free semigroups, generators and relations, word problems 20E36 Automorphisms of infinite groups Keywords:automorphism groups; free Burnside groups; automorphisms of infinite order; free subsemigroups PDF BibTeX XML Cite \textit{E. A. Cherepanov}, Commun. Algebra 33, No. 2, 539--547 (2005; Zbl 1121.20028) Full Text: DOI References: [1] Adian S. I., The Burnside problem and identities in groups (1979) · doi:10.1007/978-3-642-66932-3 [2] DOI: 10.1142/S0218196794000026 · Zbl 0822.20044 · doi:10.1142/S0218196794000026 [3] Lysionok I. G., Math. Ross. Izv. 60 pp 3– (1996) · doi:10.4213/im77 [4] Novikov P. S., Izv. Acad. Nauk SSSRT, 32, in: On Infinite Periodical Groups I–III (1968) [5] Ol’shanskii A. Yu., Mat. Sb. 118 pp 203– (1982) [6] DOI: 10.1007/978-94-011-3618-1 · doi:10.1007/978-94-011-3618-1 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.