Carletti, Timoteo; Rosati, Lilia; Villari, Gabriele Qualitative analysis of the phase portrait for a class of planar vector fields via the comparison method. (English) Zbl 1121.34039 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 1, 39-51 (2007). The authors study systems of ordinary differential equations of the form \[ \dot x = y,\quad \dot y = \sum_{k=0}^nf_k(x)y^k. \] They prove theorems that guarantee existence or non-existence of a limit cycle surrounding the origin via the comparison method. Reviewer: Douglas S. Shafer (Charlotte) Cited in 7 Documents MSC: 34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations 34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations Keywords:limit cycle; planar polynomial vector field PDF BibTeX XML Cite \textit{T. Carletti} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 1, 39--51 (2007; Zbl 1121.34039) Full Text: DOI arXiv References: [1] Freedman, H.I.; Kuang, Y., Uniqueness of limit cycles in the Liénard-type equations, Nonlinear anal. TMA, 15, 4, 333-338, (1990) · Zbl 0705.34038 [2] Guidorizzi, H.L., Oscillating and periodic solutions of equations of the type \(\ddot{x} + f_1(x) \dot{x} + f_2(x) \dot{x}^2 + g(x) = 0\), J. math. anal. appl., 176, 11-23, (1993) [3] Jifa, J., On the qualitative behaviour of solutions of the equation \(\ddot{x} + f_1(x) \dot{x} + f_2(x) \dot{x}^2 + g(x) = 0\), J. math. anal. appl., 194, 597-611, (1995) · Zbl 0844.34035 [4] Jifa, J., Qualitative investigation of the second order equation \(\ddot{x} + f(x, \dot{x}) \dot{x} + g(x) = 0\), Math. proc. camb. philos. soc., 122, 325-342, (1995) [5] Jifa, J., The global stability of a class of second order differential equations, Nonlinear anal. TMA, 28, 5, 855-870, (1997) · Zbl 0874.34050 [6] Jin, Z., On the existence and uniqueness of periodic solutions for Liénard-type equations, Nonlinear anal. TMA, 27, 12, 1463-1470, (1996) · Zbl 0864.34031 [7] Massera, J.L., Sur un théoreme de G. sansone sur l’équation de Liénard, Boll. unione mat. ital. (3), 9, 367-369, (1954) · Zbl 0057.07004 [8] Papini, D.; Villari, G., Periodic solutions of a certain generalized Liénard equation, Funkcialaj ekvacioj, 47, 21-61, (2004) · Zbl 1123.34035 [9] Sansone, G.; Conti, R., Non-linear differential equations, (1964), Pergamon Press · Zbl 0128.08403 [10] Villari, G., On the qualitative behaviour of solutions of Liénard equation, J. differential equations, 67, 2, 269-277, (1987) · Zbl 0613.34031 [11] Villari, G., Periodic solutions of liénard’s equation, J. math. anal. appl., 86, 2, 379-386, (1982) · Zbl 0489.34037 [12] Zhang, Z.-F., Qualitative theory of differential equations, () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.