×

zbMATH — the first resource for mathematics

Existence of even homoclinic orbits for second-order Hamiltonian systems. (English) Zbl 1121.37048
Summary: Some existence theorems for even homoclinic orbits are obtained for a class of second-order nonautonomous Hamiltonian systems with symmetric potentials under a class of new superquadratic conditions. A homoclinic orbit is obtained as a limit of solutions of a certain sequence of nil-boundary-value problems which are obtained by the minimax methods.

MSC:
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alves, C.O.; Carriao, P.C.; Miyagaki, O.H., Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. math. lett., 16, 5, 639-642, (2003) · Zbl 1041.37032
[2] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear anal., 7, 9, 981-1012, (1983) · Zbl 0522.58012
[3] Carriao, P.C.; Miyagaki, O.H., Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. math. anal. appl., 230, 1, 157-172, (1999) · Zbl 0919.34046
[4] Coti-Zelati, V.; Ekeland, I.; Sere, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. ann., 288, 1, 133-160, (1990) · Zbl 0731.34050
[5] Ding, Y.H., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 11, 1095-1113, (1995) · Zbl 0840.34044
[6] Fei, G.H., The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign, Chinese ann. math. ser. A, Chinese ann. math. ser. B, 4, 4, 403-410, (1996), (A Chinese summary); · Zbl 0871.58036
[7] Felmer, P.L.; De B.e. Silva, E.A., Homoclinic and periodic orbits for Hamiltonian systems, Ann. sc. norm. super. Pisa cl. sci. (4), 26, 2, 285-301, (1998) · Zbl 0919.58026
[8] Korman, P.; Lazer, A.C., Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. differential equations 1994, 1, 1-10, (1994)
[9] Lions, P.L., The concentration – compactness principle in the calculus of variations. the locally compact case, II, ann. inst. H. Poincaré anal. non linéaire, 1, 4, 223-283, (1984) · Zbl 0704.49004
[10] Mawhin, J.; Willem, M., ()
[11] Marek, I.; Joanna, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. differential equations, 219, 2, 375-389, (2005) · Zbl 1080.37067
[12] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential integral equations, 5, 5, 1115-1120, (1992) · Zbl 0759.58018
[13] Ou, Z.Q.; Tang, C.L., Existence of homoclinic solution for the second order Hamiltonian systems, J. math. anal. appl., 291, 1, 203-213, (2004) · Zbl 1057.34038
[14] Rabinowitz, P.H., Homoclinic orbits for a class of Hamiltonian systems, Proc. roy. soc. Edinburgh sect. A, 114, 1-2, 33-38, (1990) · Zbl 0705.34054
[15] Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 3, 473-499, (1991) · Zbl 0707.58022
[16] Rabinowitz, P.H., (), Published for the Conference Board of the Mathematical Sciences, Washington, DC
[17] Salvatore, A., Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, Proceedings of the second world congress of nonlinear analysts, part 8 (Athens, 1996), Nonlinear anal., 30, 8, 4849-4857, (1997) · Zbl 0893.34041
[18] Serra, E.; Tarallo, M.; Terracini, S., Subharmonic solutions to second-order differential equations with periodic nonlinearities, Nonlinear anal., 41, 5-6, 649-667, (2000) · Zbl 0985.34033
[19] Zhang, S.Q., Symmetrically homoclinic orbits for symmetric Hamiltonian systems, J. math. anal. appl., 247, 2, 645-652, (2000) · Zbl 0983.37076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.