×

A theory of hyperelasticity of multi-phase media with surface/interface energy effect. (English) Zbl 1121.74007

The authors elaborate on a rather general theory of hyperelasticity of multi-phase media with a surface/interface energy effect. Their efforts are concentrated on the construction of a variational formulation of equilibrium equations. The price to pay for this project is the introduction of a fictitious stress-free configuration. The authors motivate this new concept and the related new ideas. By standard stationary techniques applied to the proposed functional, the authors deduce both equilibrium equations and certain (generalized) Young-Laplace equations. Some examples are given in details.

MSC:

74B20 Nonlinear elasticity
74A50 Structured surfaces and interfaces, coexistent phases
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Gibbs, J. W., The scientific papers of J. Willard Gibbs, vol. 1 (1906), London: Longmans-Green, London
[2] Shuttleworth, R., The surface tension of solids, Proc. Phys. Soc., A63, 444-457 (1950)
[3] Herring, C.; Gomer, R.; Smith, C. S., The use of classical macroscopic concepts in surface energy problems, Structure and properties of solid surfaces, 5-81 (1953), Chicago: The University of Chicago Press, Chicago
[4] Ibach, H., The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rep., 29, 195-263 (1997)
[5] Haiss, W., Surface stress of clean and adsorbate-covered solids, Rep. Prog. Phys., 64, 591-648 (2001)
[6] Müller, P.; Saúl, A., Elastic effects on surface physics, Surf. Sci. Rep., 54, 157-258 (2004)
[7] Cammarata, R. C., Surface and interface stress effects on interfacial and nanostructured materials, Mater. Sci. Engng. A, 237, 180-184 (1997)
[8] Zhou, L. G.; Huang, H. C., Are surfaces elastically softer or stiffer?, Appl. Phys. Lett., 84, 1940-1942 (2004)
[9] Cuenot, S.; Frétigny, C.; Demoustier-Champagne, S.; Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phys. Rev. B, 69, 165410-5 (2004)
[10] Duan, H. L.; Wang, J.; Huang, Z. P.; Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53, 1574-1596 (2005) · Zbl 1120.74718
[11] Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effect on the elastic behaviour of nano-sized particles, wires and films, J. Mech. Phys. Solids, 53, 1827-1854 (2005) · Zbl 1120.74683
[12] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Rat. Mech. Anal., 57, 291-323 (1975) · Zbl 0326.73001
[13] Steigmann, D. J.; Ogden, R. W., Elastic surface-substrate interactions, Proc. Roy. Soc. London, A455, 437-474 (1999) · Zbl 0926.74016
[14] Seth, B. R.; Reiner, M.; Abir, D., Generalized strain measure with application to physical problems, Second-order effects in elasticity, plasticity and fluid dynamics, 162-172 (1964), Oxford: Pergamon Press, Oxford
[15] Cammarata, R. C.; Eby, R. K., Effects and measurement of internal surface stress in materials with ultrafine microstructures, J. Mater. Res., 6, 888-890 (1991)
[16] Huang, Z. P., Fundamentals of continuum mechanics (2003), Beijing: Higher Education Press, Beijing
[17] Ogden, R. W., Nonlinear elastic deformations (1984), Chichester: Ellis Horwood, Chichester · Zbl 0541.73044
[18] Carroll, M. M., Finite strain solutions in compressible isotropic elasticity, J. Elasticity, 20, 65-92 (1988) · Zbl 0654.73030
[19] Carroll, M. M., Controllable deformations in compressible finite elasticity, Stability Appl. Anal. Continuous Media, 1, 373-384 (1991)
[20] Murphy, J. G., Some new closed-form solutions describing spherical inflation in compressible finite elasticity, IMA J. Appl. Math., 48, 305-316 (1992) · Zbl 0759.73021
[21] Murphy, J. G., A family of solutions describing spherical inflation in finite compressible elasticity, Q. J. Mech. Appl. Math., 50, 35-45 (1997) · Zbl 0885.73008
[22] Horgan, C. O., Void nucleation and growth for compressible nonlinearly elastic materials: an example, Int. J. Solids Struct., 29, 279-291 (1992) · Zbl 0755.73026
[23] Horgan, C. O.; Fu, Y. B.; Ogden, R. W., Equilibrium solutions for compressible nonlinearly elastic materials, Nonlinear elasticity: theory and applications, 135-159 (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0993.74008
[24] John, F., Plane strain problems for a perfectly elastic material of harmonic type, Comm. Pure Appl. Math., 13, 239-296 (1960) · Zbl 0094.37001
[25] Haughton, D. M., Inflation of thick-walled compressible elastic spherical shells, IMA J. Appl. Math., 39, 259-272 (1987) · Zbl 0649.73021
[26] Hashin, Z., Large isotropic elastic deformation of composites and porous media, Int. J. Solids Struct., 21, 711-720 (1985) · Zbl 0575.73051
[27] Aboudi, J.; Arnold, S. M., Micromechanical modeling of the finite deformation of thermoelastic multiphase composites, Math. Mech. Solids, 5, 75-99 (2000) · Zbl 1024.74017
[28] Chung, D. T.; Horgan, C. O.; Abeyaratne, R., The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials, Int. J. Solids Struct., 22, 1557-1570 (1986) · Zbl 0603.73038
[29] Hill, J. M., Cylindrical and spherical inflation in compressible finite elasticity, IMA J. Appl. Math., 50, 195-201 (1993) · Zbl 0773.73038
[30] Murphy, J. G.; Biwa, S., Non-monotonic cavity growth in finite compressible elasticity, Int. J. Solids Struct., 34, 3859-3872 (1997) · Zbl 0942.74530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.