×

zbMATH — the first resource for mathematics

Operator-splitting with ISAT to model reacting flow with detailed chemistry. (English) Zbl 1121.80333
Summary: We further increase the computational performance of an operator-split projection scheme for the solution of the equations governing reacting flows with detailed chemistry. This enhancement is achieved by using in situ adaptive tabulation (ISAT) to compute the pure reaction sub-steps; the treatment of diffusion and convection is unchanged. The modified scheme is applied to an unsteady one-dimensional laminar premixed methane–air flame problem using detailed GRIMech3.0 chemical kinetics. For this problem we demonstrate second-order temporal convergence, investigate the impact of the ISAT error tolerance on solution accuracy, and compare results with and without ISAT. Computational performance is also examined where we observe a reaction sub-step speed-up factor due to ISAT of approximately 13; the overall time step speed-up is approximately 7.5. Extension of the scheme to multiple dimensions is discussed.

MSC:
80A25 Combustion
80M25 Other numerical methods (thermodynamics) (MSC2010)
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/713665229 · Zbl 1046.80500
[2] Najm H. N., J. Sci. Comp. (2004)
[3] Fiorina B., Combust. Theory Modelling 7 pp 449– (2003)
[4] DOI: 10.1016/S0010-2180(03)00045-2
[5] Tonse S. R., Israel Journal of Chemistry 39 pp 97– (1999)
[6] DOI: 10.1002/kin.10140
[7] DOI: 10.1016/S0082-0784(00)80201-5
[8] DOI: 10.1016/S1352-2310(97)88636-0
[9] DOI: 10.1016/S0377-0427(99)00143-0 · Zbl 0949.65090
[10] DOI: 10.1088/1364-7830/7/2/310
[11] DOI: 10.1016/S0010-2180(97)89577-6
[12] DOI: 10.1006/jcph.1997.5856 · Zbl 0936.76064
[13] DOI: 10.1006/jcph.1999.6322 · Zbl 0958.76061
[14] DOI: 10.1088/1364-7830/4/4/309 · Zbl 0970.76065
[15] DOI: 10.1016/S1540-7489(02)80242-5
[16] DOI: 10.1016/j.jcp.2003.10.035 · Zbl 1115.85302
[17] DOI: 10.1016/S0010-2180(97)81759-2
[18] DOI: 10.1088/1364-7830/8/2/009 · Zbl 1068.80538
[19] Rehm R. G., NBS J. Res. 83 pp 297– (1978)
[20] DOI: 10.1080/00102208508960376
[21] DOI: 10.1002/0471461296
[22] DOI: 10.1016/S0168-9274(96)00022-0 · Zbl 0868.65064
[23] DOI: 10.1016/0098-1354(85)85014-6
[24] DOI: 10.1137/0910062 · Zbl 0677.65075
[25] Ascher U. M., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1998) · Zbl 0908.65055
[26] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr., Lissianski, V. V. and Qin, Z. http://www.me.berkeley.edu/gri_mech/
[27] Kee, R. J., Grcar, J. F., Smooke, M. D. and Miller, J. A. Sandia Report SAND85-8240 Sandia National Laboratories. Livermore, CA.
[28] Kee, R. J., Rupley, F. M. and Miller, J. A. Sandia Report SAND89-8009 Sandia National Laboratories. Livermore, CA.
[29] DOI: 10.1016/S0010-2180(97)00209-5
[30] Turns S. R., An Introduction to Combustion (2000)
[31] Poinsot T., Theoretical and Numerical Combustion (2001)
[32] DOI: 10.1080/00102209208951793
[33] DOI: 10.1016/0010-2180(92)90034-M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.