Li, Shuanming; Garrido, José On a class of renewal risk models with a constant dividend barrier. (English) Zbl 1122.91345 Insur. Math. Econ. 35, No. 3, 691-701 (2004). Summary: We consider a compound renewal (Sparre Andersen) risk process in the presence of a constant dividend barrier in which the claim waiting times are generalized Erlang\((n)\) distributed (i.e., convolution of n exponential distributions with possibly different parameters). An integro-differential equation with certain boundary conditions for the Gerber-Shiu function is derived and solved. Its solution can be expressed as the Gerber-Shiu function in the corresponding Sparre Andersen risk model without a barrier plus a linear combination of \(n\) linearly independent solutions to the associated homogeneous integro-differential equation. Finally, explicit results are given when the claim sizes are exponentially distributed. Cited in 63 Documents MSC: 91B30 Risk theory, insurance (MSC2010) 60K10 Applications of renewal theory (reliability, demand theory, etc.) Keywords:Sparre Andersen risk process; Integro-differential equation; Generalized Erlang(n) distribution; Time of ruin; Surplus before ruin; Deficit at ruin PDF BibTeX XML Cite \textit{S. Li} and \textit{J. Garrido}, Insur. Math. Econ. 35, No. 3, 691--701 (2004; Zbl 1122.91345) Full Text: DOI OpenURL References: [1] Albrecher, H.; Kainhofer, R., Risk theory with a nonlinear dividend barrier, Computing, 68, 289-311, (2002) · Zbl 1076.91521 [2] Andersen, E.S., On the collective theory of risk in case of contagion between claims, Bull. inst. math. appl., 12, 275-279, (1957) [3] Bühlmann, H., Mathematical methods in risk theory, (1970), Springer-Verlag New York · Zbl 0209.23302 [4] Cheng, Y.; Tang, Q., Moments of surplus before ruin and deficit at ruin in the Erlang(2) risk process, North am. actuarial J., 7, 1, 1-12, (2003) · Zbl 1084.60544 [5] De Finetti, B., Su un’impostazione alternativa dell teoria colletiva del rischio, Trans. XV int. congress actuaries, 2, 433-443, (1957) [6] Dickson, D.C.M., On a class of renewal risk process, North am. actuarial J., 2, 3, 60-68, (1998) [7] Dickson, D.C.M.; Drekic, S., The joint distribution of the surplus prior to ruin and the deficit at ruin in some sparre Andersen models, Insurance: math. econ., 34, 97-107, (2004) · Zbl 1043.60036 [8] Dickson, D.C.M.; Hipp, C., Ruin probabilities for Erlang(2) risk process, Insurance: math. econ., 22, 251-262, (1998) · Zbl 0907.90097 [9] Dickson, D.C.M.; Hipp, C., Ruin problems for phase-type(2) risk processes, Scand. actuarial J., 2, 147-167, (2000) · Zbl 0971.91036 [10] Dickson, D.C.M.; Hipp, C., On the time to ruin for Erlang(2) risk process, Insurance: math. econ., 29, 333-344, (2001) · Zbl 1074.91549 [11] Gerber, H.U., Martingales in risk theory, Mitteilungen der schweizer vereinigung der versicherungsmathematiker, 73, 205-206, (1973) · Zbl 0278.60047 [12] Gerber, H.U., 1979. An Introduction to Mathematical Risk Theory. Monograph Series 8, Huebner Foundation, Philadelphia. [13] Gerber, H.U., On the probability of ruin in the presence of a linear dividend barrier, Scand. actuarial J., 2, 105-115, (1981) · Zbl 0455.62086 [14] Gerber, H.U.; Shiu, E.S.W., On the time value of ruin, North am. actuarial J., 2, 1, 48-78, (1998) · Zbl 1081.60550 [15] Gerber, H.U.; Shiu, E.S.W., Discussion of Y. cheng and Q. tang’s “moments of the surplus before ruin and the deficit at ruin”, North am. actuarial J., 7, 3, 117-119, (2003) · Zbl 1084.60545 [16] Gerber, H.U.; Shiu, E.S.W., Discussion of Y. cheng and Q. tang’s “moments of the surplus before ruin and the deficit at ruin”, North am. actuarial J., 7, 4, 96-101, (2003) · Zbl 1084.60546 [17] Gerber, H.U., Shiu, E.S.W., 2004. The time value of ruin in a Sparre Andersen model, submitted for publication. · Zbl 1085.62508 [18] Højgaard, B., Optimal dynamic premium control in non-life insurance: maximizing dividend payouts, Scand. actuarial J., 225-245, (2002) · Zbl 1039.91042 [19] Li, S., Discussion of Y. cheng and Q. tang’s “moments of the surplus before ruin and the deficit at ruin”, North am. actuarial J., 7, 3, 119-122, (2003) · Zbl 1084.60547 [20] Li, S., 2004. On the time value of ruin for insurance risk models. Ph.D. thesis, Concordia University. [21] Li, S.; Garrido, J., On ruin for Erlang(n) risk process, Insurance: math. econ., 34, 391-408, (2004) · Zbl 1188.91089 [22] Lin, X.S., Discussion of Y. cheng and Q. tang’s “moments of the surplus before ruin and the deficit at ruin”, North am. actuarial J., 7, 3, 122-124, (2003) · Zbl 1084.60548 [23] Lin, X.S.; Willmot, G.E.; Drekic, S., The classical risk model with a constant dividend barrier: analysis of the gerber – shiu discounted penalty function, Insurance: math. econ., 33, 551-566, (2003) · Zbl 1103.91369 [24] Paulsen, J.; Gjessing, H., Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance: math. econ., 20, 215-223, (1997) · Zbl 0894.90048 [25] Segerdahl, C., 1970. On some distributions in time-connected with the collective theory of risk. Scand. Actuarial J. 167-192. · Zbl 0229.60063 [26] Sun, L.; Yang, H., On the joint distributions of surplus immediately before ruin and the deficit at ruin for Erlang(2) risk processes, Insurance: math. econ., 34, 121-125, (2004) · Zbl 1054.60017 [27] Tsai, C.C.; Sun, L., On the discounted distribution functions for the Erlang(2) risk process, Insurance: math. econ., 35, 5-19, (2004) · Zbl 1215.62114 [28] Willmot, G.E., A Laplace transform representation in a class of renewal queuing and risk process, J. appl. probability, 36, 570-584, (1999) · Zbl 0942.60086 [29] Willmot, G.E.; Dickson, D.C.M., The gerber-shiu discounted penalty function in the stationary renewal risk model., Insureance: math. econ., 32, 403-411, (2003) · Zbl 1072.91027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.