×

zbMATH — the first resource for mathematics

Null controllability of discrete-time planar bimodal piecewise linear systems. (English) Zbl 1122.93012
Summary: This paper addresses the null controllability problem for a class of discrete-time piecewise linear systems. Based on a general classification method, explicit necessary and sufficient conditions for the controllability of discrete-time planar bimodal piecewise linear systems are derived. The complexity of the controllability problem for piecewise linear systems can be clearly seen from the study of the present paper. We also briefly discuss the high-order and multi-modal cases.

MSC:
93B05 Controllability
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Azuma, S and Imura, J. 2004. ”A probabilistic approach to controllability/reachability analysis of hybrid systems”. Conference on Decision and Control. 2004, Bahamas, US. pp.485–490.
[2] DOI: 10.1109/TAC.2000.880987 · Zbl 0990.93010 · doi:10.1109/TAC.2000.880987
[3] Bemporad A, Hybrid Systems: Computation and Control 1790 (2000)
[4] DOI: 10.1016/S0005-1098(98)00175-7 · Zbl 0943.93044 · doi:10.1016/S0005-1098(98)00175-7
[5] Çamlibel, MK, Heemels, WPMH and Schumacher, JM. 2003. ”Stability and controllability of planar bimodal linear complementarity systems”. Conference on Decision and Control. 2003, Maui, Hawaii, USA. pp.1651–1656.
[6] DOI: 10.1109/TAC.2002.800666 · Zbl 1364.93563 · doi:10.1109/TAC.2002.800666
[7] DOI: 10.1109/TFUZZ.2003.817837 · doi:10.1109/TFUZZ.2003.817837
[8] DOI: 10.1016/S0005-1098(02)00142-5 · Zbl 1010.93090 · doi:10.1016/S0005-1098(02)00142-5
[9] Geyer T, PhD thesis (2005)
[10] DOI: 10.1016/S0005-1098(01)00059-0 · Zbl 0990.93056 · doi:10.1016/S0005-1098(01)00059-0
[11] DOI: 10.1109/81.928154 · Zbl 1104.93315 · doi:10.1109/81.928154
[12] DOI: 10.1109/81.841852 · Zbl 0972.93057 · doi:10.1109/81.841852
[13] DOI: 10.1007/978-1-4612-0205-9 · doi:10.1007/978-1-4612-0205-9
[14] DOI: 10.1109/TAC.2003.819075 · Zbl 1364.93340 · doi:10.1109/TAC.2003.819075
[15] DOI: 10.1016/j.automatica.2003.11.012 · Zbl 1048.93064 · doi:10.1016/j.automatica.2003.11.012
[16] DOI: 10.1109/9.880612 · Zbl 0978.34012 · doi:10.1109/9.880612
[17] Iwatani Y, Technical report (2004)
[18] Iwatani, Y and Hara, S. 2004b. ”Stability test based on eigenvalue loci for bimodal piecewise linear systems”. American Control Conference. 2004b, Boston, Massachusetts. pp.1879–1884.
[19] Johansson M, Piecewise Linear Control System (2003) · doi:10.1007/3-540-36801-9
[20] Khalil HK, Nonlinear Systems,, 3. ed. (2002)
[21] DOI: 10.1109/9.847100 · Zbl 0969.49016 · doi:10.1109/9.847100
[22] Rodrigues L, PhD thesis (2002)
[23] Rugh WL, Linear System Theory,, 2. ed. (1996)
[24] DOI: 10.1109/TAC.1981.1102596 · Zbl 0474.93039 · doi:10.1109/TAC.1981.1102596
[25] Xie, G, Wang, L, Xun, B and Zhao, L. 2003. ”Null controllability of planar piecewise linear systems”. IEEE International conference on systems, man and cybernetics. 2003, Washington D.C., USA. pp.154–159.
[26] Xu, J and Xie, L. 2005. ”Homogeneous polynomial Lyapunov functions for piecewise affine systems”. American Control Conference. 2005, Portland, Oregon, USA. pp.581–586.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.