×

Fuzzy equivalence relations and their equivalence classes. (English) Zbl 1123.03049

The authors investigate various properties of equivalence classes of fuzzy equivalence relations over a complete residuated lattice, and give certain characterizations of fuzzy semi-partitions and fuzzy partitions over a complete residuated lattice, as well as over a linearly ordered complete Heyting algebra.

MSC:

03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bělohlávek, R., Fuzzy relational systems: foundations and principles, (2002), Kluwer Academic Publishers New York · Zbl 1067.03059
[2] Blount, K.; Tsinakis, C., The structure of residuated lattices, Internat. J. algebra comput., 13, 4, 437-461, (2003) · Zbl 1048.06010
[3] Boixader, D.; Jacas, J.; Recasens, J., Transitive closure and betweenness relations, Fuzzy sets and systems, 120, 415-422, (2001) · Zbl 0981.03054
[4] Butnariu, D., Additive fuzzy measures and integrals, J. math. anal. appl., 93, 436-452, (1983) · Zbl 0516.28006
[5] De Baets, B., A note on mamdani controllers, (), 22-28
[6] De Baets, B.; De Cooman, G.; Kerre, E., The construction of possibility measures from samples on T-semi-partitions, Inform. sci., 106, 3-24, (1998) · Zbl 1031.94555
[7] De Baets, B.; Mareš, M.; Mesiar, R., T-partitions of the real line generated by idempotent shapes, Fuzzy sets and systems, 91, 177-184, (1997) · Zbl 0919.04004
[8] De Baets, B.; Mesiar, R., \(\mathcal{T}\)-partitions, Fuzzy sets and systems, 97, 211-223, (1998) · Zbl 0930.03070
[9] De Baets, B.; Mesiar, R., Metrics and \(\mathcal{T}\)-equalities, J. math. anal. appl., 267, 531-547, (2002) · Zbl 0996.03035
[10] Demirci, M., On many-valued partitions and many valued equivalence relations, Int. J. uncertainty, fuzziness knowledge-based systems, 11, 235-253, (2003) · Zbl 1074.03021
[11] Demirci, M., Representations of the extensions of many-valued equivalence relations, Int. J. uncertainty, fuzziness knowledge-based systems, 11, 319-341, (2003) · Zbl 1074.03020
[12] Demirci, M., Indistinguishability operators in measurement theory, part I: conversions of indistinguishability operators with respect to scales, Internat. J. general systems, 32, 415-430, (2003) · Zbl 1051.93018
[13] Demirci, M., Indistinguishability operators in measurement theory, part II: construction of indistinguishability operators based on probability distributions, Internat. J. general systems, 32, 431-458, (2003) · Zbl 1051.93019
[14] Demirci, M.; Recasens, J., Fuzzy groups, fuzzy functions and fuzzy equivalence relations, Fuzzy sets and systems, 144, 441-458, (2004) · Zbl 1066.20076
[15] Doignon, J.-P.; Mitas, J., Dimension of valued relations, European J. oper. res., 125, 571-587, (2000) · Zbl 1028.91534
[16] Hart, J.B.; Rafter, L.; Tsinakis, C., The structure of commutative residuated lattices, Internat. J. algebra comput., 12, 4, 509-524, (2002) · Zbl 1011.06006
[17] U. Höhle, Fuzzy equalities and indistinguishability, in: Proc. EUFIT’93, 1993, pp. 358-363.
[18] Höhle, U., Commutative, residuated \(\ell\)-monoids, (), 53-106 · Zbl 0838.06012
[19] Höhle, U., On the fundamentals of fuzzy set theory, J. math. anal. appl., 201, 786-826, (1996) · Zbl 0860.03038
[20] Höhle, U., Many-valued equalities, Singletons and fuzzy partitions, soft comput., 2, 134-140, (1998)
[21] Jacas, J., Similarity relations. the calculation of minimal generating families, Fuzzy sets and systems, 35, 151-162, (1990) · Zbl 0734.04009
[22] Jacas, J.; Recasens, J., Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy sets and systems, 72, 147-154, (1995) · Zbl 0844.04006
[23] Jacas, J.; Recasens, J., Maps and isometries between indistinguishability operators, Soft comput., 6, 14-20, (2002) · Zbl 0991.03050
[24] Klawonn, F., Fuzzy points, fuzzy relations and fuzzy functions, (), 431-453 · Zbl 1010.03045
[25] Klawonn, F.; Kruse, R., From fuzzy sets to indistinguishability and back, (), A57-A59
[26] Moser, B.; Winkler, R., A relationship between equality relations and the T-redundancy of fuzzy partitions and its applications to sugeno controllers, Fuzzy sets and systems, 114, 455-467, (2000) · Zbl 0968.93045
[27] Murali, V., Fuzzy equivalence relations, Fuzzy sets and systems, 30, 155-163, (1989) · Zbl 0668.04005
[28] Ovchinnikov, S., Representations of transitive fuzzy relations, (), 105-118
[29] Ovchinnikov, S., Similarity relations, fuzzy partitions, and fuzzy orderings, Fuzzy sets and systems, 40, 107-126, (1991) · Zbl 0725.04003
[30] Ruspini, E., A new approach to clustering, Inform. control, 15, 22-32, (1969) · Zbl 0192.57101
[31] H. Thiele, On the mutual defineability of fuzzy tolerance relations and fuzzy tolerance coverings, in: Proc. 25th Internat. Symp. on Multiple-Valued Logic, IEEE Computer Society, Los Alamitos, CA, 1995, pp. 140-145.
[32] H. Thiele, N. Schmechel, The mutual defineability of fuzzy equivalence relations and fuzzy partitions, in: Proc. Internat. Joint Conf. of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, Yokohama, 1995, pp. 1383-1390.
[33] Valverde, L., On the structure of F-indistinguishability operators, Fuzzy sets and systems, 17, 313-328, (1985) · Zbl 0609.04002
[34] Zadeh, L.A., Similarity relations and fuzzy orderings, Inform. sci., 3, 177-200, (1971) · Zbl 0218.02058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.