×

A computational framework for fluid-rigid body interaction: finite element formulation and applications. (English) Zbl 1123.76029

Summary: This work is concerned with the modelling of interaction of fluid flow with flexibly supported rigid bodies. The fluid flow is governed by incompressible Navier-Stokes equations and modelled by employing stabilised low-order velocity-pressure finite elements. The motion of the fluid domain is accounted for by an arbitrary Lagrangian-Eulerian strategy. The rigid body motion, excited by the fluid flow, is restricted by elastic and damping properties of the supports. For the temporal discretisation, the discrete implicit generalised-\(\alpha\) method is employed. The resulting strongly coupled set of nonlinear equations is solved by means of a novel partitioned solution procedure, which is based on Newton-Raphson methodology and incorporates full linearisation of the overall incremental problem. The strong coupling is resolved and optimal convergence of the residuals is achieved. Several numerical examples demonstrate the robustness and efficiency of the methodology. The examples clearly capture the phenomena of vortex-induced oscillations and galloping.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
70E99 Dynamics of a rigid body and of multibody systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. Dettmer, D. Perić, A computational framework for fluid-structure interaction: finite element formulation and applications, Comput. Methods Appl. Mech. Engrg., in press. · Zbl 1155.76354
[2] Brooks, A.N.; Hughes, T.J.R., Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[3] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[4] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[5] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[6] Droux, J.-J.; Hughes, T.J.R., A boundary integral modification of the Galerkin/least-squares formulation for the Stokes problem, Comput. methods appl. mech. engrg., 113, 173-182, (1994) · Zbl 0845.76038
[7] Jansen, K.E.; Collis, S.S.; Shakib, F., A better consistency for low-order stabilized finite element methods, Comput. methods appl. mech. engrg., 174, 153-170, (1999) · Zbl 0956.76044
[8] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[9] Masud, A.; Hughes, T.J.R., A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. methods appl. mech. engrg., 146, 91-126, (1997) · Zbl 0899.76259
[10] Behr, M.; Tezduyar, T.E., The shear slip mesh update method, Comput. methods appl. mech. engrg., 174, 261-274, (1999) · Zbl 0959.76037
[11] Kalro, V.; Tezduyar, T.E., A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput. methods appl. mech. engrg., 190, 321-332, (2000) · Zbl 0993.76044
[12] Perić, D.; Slijepčević, S., Computational modelling of viscoplastic fluids based on a stabilised finite element method, Engrg. comput., 18, 577-591, (2001) · Zbl 1020.76029
[13] Dettmer, W.; Saksono, P.H.; Perić, D., On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension, Commun. numer. methods engrg., 19, 659-668, (2003) · Zbl 1112.76387
[14] W. Dettmer, D. Perić, A computational framework for free surface fluid flows accounting for surface tension, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2004.07.057. · Zbl 1115.76043
[15] D. Perić, P.H. Saksono, On finite element modelling of surface tension: variational formulation and applications—Part I: Quasistatic problems, Comput. Mech., in press.
[16] D. Perić, P.H. Saksono, On finite element modelling of surface tension: variational formulation and applications—Part II: Dynamic problems, Comput. Mech., in press.
[17] W. Wall, Fluid-struktur-interaktion mit stabilisierten finiten elementen, Ph.D. thesis, Universität Stuttgart, 1999.
[18] W. Dettmer, Finite element modelling of fluid flow with moving free surfaces and interfaces including fluid-solid interaction, Ph.D. thesis, University of Wales Swansea, 2004.
[19] Franca, L.P., Advances in stabilised methods in computational mechanics, Comput. methods appl. mech. engrg., 166, 1-182, (1998)
[20] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary-Lagrangian-Eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[21] Hughes, T.J.R.; Liu, W.K.; Zimmermann, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[22] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, (), 473-516
[23] Ramaswamy, B.; Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow, Int. J. numer. methods fluids, 7, 1053-1075, (1987) · Zbl 0634.76033
[24] Ramaswamy, B., Numerical simulation of unsteady viscous free surface flow, J. comput. phys., 90, 396-430, (1990) · Zbl 0701.76036
[25] Huerta, A.; Liu, W.K., Viscous flow with large free surface motion, Comput. methods appl. mech. engrg., 69, 277-324, (1988) · Zbl 0655.76032
[26] Soulaimani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y., Finite element simulation of two- and three-dimensional free surface flows, Comput. methods appl. mech. engrg., 86, 265-296, (1991) · Zbl 0761.76037
[27] Sackinger, P.A.; Schunk, P.R.; Rao, R.R., A Newton-raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation, J. comput. phys., 125, 83-103, (1996) · Zbl 0853.65138
[28] Soulaimani, A.; Saad, Y., An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows, Comput. methods appl. mech. engrg., 162, 79-106, (1998) · Zbl 0948.76043
[29] Braess, H.; Wriggers, P., Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow, Comput. methods appl. mech. engrg., 190, 95-109, (2000) · Zbl 0967.76053
[30] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley & Sons Chichester, UK · Zbl 0959.74001
[31] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time-procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[32] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time-procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[33] Li, L.; Sherwin, S.J.; Bearman, P.W., A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies, Int. J. numer. methods fluids, 38, 187-206, (2002) · Zbl 1009.76055
[34] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. appl. mech., 60, 371-375, (1993) · Zbl 0775.73337
[35] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (2000) · Zbl 0973.76048
[36] Dettmer, W.; Perić, D., An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation, Comput. methods appl. mech. engrg., 192, 1177-1226, (2003) · Zbl 1091.76521
[37] Felippa, C.A.; Park, K.C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. methods appl. mech. engrg., 190, 3247-3270, (2001) · Zbl 0985.76075
[38] H.G. Matthies, R. Niekamp, J. Steindorf, Algorithms for strong coupling procedures, preprint, 2004. · Zbl 1142.74050
[39] H.G. Matthies, J. Steindorf, Strong Coupling Methods, Technical University Brunswick, Institute of Scientific Computing, 2002, Informatikbericht 2002-06. · Zbl 1312.74009
[40] T.E. Tezduyar, Methods for Computation of moving boundaries and interfaces, in: ECCOMAS 2004, Jyväskylä, Finland, 2004.
[41] T.E. Tezduyar, S. Sathe, R. Keedy, K. Stein, Space-time techniques for finite element computation of flows with moving boundaries and interfaces, in: Third International Congress on Numerical Methods in Engineering and Applied Sciences, Monterrey, Mexico, 2004. · Zbl 1118.74052
[42] Onate, E., A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation, Comput. methods appl. mech. engrg., 182, 355-370, (2000) · Zbl 0977.76050
[43] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the stabilized finite element methods—space-time formulations, iterative strategies and massively parallel implementations, (), 7-24
[44] Bar-Yoseph, P.Z.; Mereu, S.; Chippada, S.; Kalro, V.J., Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics, Comput. mech., 27, 378-395, (2001) · Zbl 1142.74378
[45] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. struct., 80, 305-316, (2002)
[46] Anagnostopoulos, P.; Bearman, P.W., Response characteristics of a vortex excited cylinder at low Reynolds numbers, J. fluids struct., 6, 39-50, (1992)
[47] Mittal, S.; Tezduyar, T.E., A finite element study of incompressible flows past oscillating cylinders and airfoils, Int. J. numer. methods fluids, 15, 1073-1118, (1992)
[48] Nomura, T.; Hughes, T.J.R., An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. methods appl. mech. engrg., 95, 115-138, (1992) · Zbl 0756.76047
[49] Nomura, T., ALE finite element computations of fluid-structure interaction problems, Comput. methods appl. mech. engrg., 112, 291-308, (1994) · Zbl 0845.76049
[50] Blevins, R.D., Flow induced vibration, (1977), Van Nostrand Reinhold Company New York · Zbl 0385.73001
[51] Den Hartog, J.P., Mechanical vibrations, (1956), McGraw-Hill Book Company New York, Toronto, London · Zbl 0071.39304
[52] de Sampaio, P.A.B.; Hallak, P.H.; Coutinho, A.L.G.A.; Pfeil, M.S., A stabilized finite element procedure for turbulent fluid-structure interaction using adaptive time-space refinement, Int. J. numer. methods fluids, 44, 673-693, (2004) · Zbl 1085.76528
[53] A. Roshko, On the development of turbulent wakes from vortex streets, National Advisory Committee for Aeronautics, NACA, 1953, p. 2913.
[54] Robertson, I.; Sherwin, S.J.; Bearman, P.W., A numerical study of rotational and transverse galloping rectangular bodies, J. fluids struct., 17, 681-699, (2003)
[55] B. Hübner, E. Walhorn, D. Dinkler, Numerical investigations of bridge aeroelasticity, WCCM V 2002, Vienna, Austria.
[56] Robertson, I.; Sherwin, S.J.; Bearman, P.W., Flutter instability prediction techniques for bridge deck sections, Int. J. numer. methods fluids, 43, 1239-1256, (2003) · Zbl 1032.76600
[57] B. Hübner, E. Walhorn, D. Dinkler, Strongly coupled analysis of fluid-structure interaction using space-time finite elements, ECCM 2001, Cracow, Poland.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.